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ABSTRACT
The modern vehicle has transformed from a purely mechanical
system to a system that embeds several electronic devices. These
devices communicate through the in-vehicle network for enhanced
safety and comfort but are vulnerable to cyber-physical risks and
attacks. A well-known technique of detecting these attacks and un-
usual events is by using intrusion detection systems. Anomalies in
the network occur at unknown points and produce abrupt changes
in the statistical features of the message stream. In this paper, we
propose an anomaly-based intrusion detection approach using the
cumulative sum (CUSUM) change-point detection algorithm to de-
tect data injection attacks on the controller area network (CAN)
bus. We leverage the parameters required for the change-point al-
gorithm to reduce false alarm rate and detection delay. Using real
dataset generated from a car in normal operation, we evaluate our
detection approach on three different kinds of attack scenarios.

CCS CONCEPTS
• Security and privacy → Intrusion detection systems; Secu-
rity protocols;

KEYWORDS
CAN, intrusion detection, data injection, sequential methods, change-
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1 INTRODUCTION
Increasingly, automobiles are becoming more advanced in terms of
the numerous electronic control unit (ECU) embedded in them and
their interaction with the outside environment. The automotive
system continues to embed several computing devices which have
become an essential part of the vehicle architecture. With these
ECUs, modern vehicles are more connected to the outside world
and external networks through various remote surfaces that pro-
portionally increase to new vehicle features. Similar to computing
devices, these ECUs are susceptible to cyber and physical attacks.
This susceptibility has opened up the vehicular system to remote
and physical attacks. Researchers have demonstrated how these
remote surfaces can be exploited to compromise the vehicular net-
works and control the entire vehicle operations remotely [2, 7, 10].

Koscher et al. [7] were the first to demonstrate and performed prac-
tical attacks on vehicles by sniffing the controller area network
(CAN) bus messages and reverse engineering of the ECU codes to
take control of a range of automotive functions. Hoppe et al. [4]
demonstrated possible attacks on the CAN bus and their vulnerabil-
ities while Miller and Valasek [10] demonstrated an attack on the
Jeep Cherokee by exploiting the weakness in theWiFi network code
generation protocol. Similarly, attacks on the Bluetooth connection
of a car has been demonstrated by Checkoway et al. [2]. These
attacks produce unexpected changes in the patterns of messages
communicated on the bus.

Of most importance is the security of the in-vehicle network
that facilitate the communication of ECUs over various networks
and protocols. A prominent network is the CAN that provides
shared priority-based communication designed to be simple and
efficient, but with no securitymechanism. Remote attacks have been
demonstrated on the network exploiting this security weakness to
manipulate, degrade and take over control of a vehicle. Some of
the major concerns are the broadcast nature, the lack of message
authentication and encryption which presents an opportunity for
the adversary to use them as an access point to carry out a large-
scale attack on the vehicle.

Detecting changes in statistical properties of a network stream
have been broadly studied in different domains, and change-point
detection approach has been applied [18, 21, 22]. The key idea of this
detection approach is to model CAN bus messages as a sequence
of measurement over time to describe the vehicle behavior. Hence,
detecting abrupt changes in the network can be formulated and
solved as a change-point detection problem. Due to external and
internal events such as fuzzy and DOS attacks on the bus, there can
be a significant change in the behavior of the messages broadcast
on the CAN bus. Change-point analysis can be used to determine
the point or multiple points in time where the changes occurred
and their degrees with a sequential approach (average delay) while
controlling the false alarm rate [1]. Hence, we implement the adap-
tive cumulative sum (CUSUM) change-point detection procedure
for time series analysis to model CAN bus messages.

In this work, we investigate the performance of the anomaly-
based sequential change-point detection using CUSUM algorithm
to detect data injection attacks on the CAN bus. The change-point
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detection monitors and compares the features of the observed mes-
sage sequence against a predetermined pattern of normal behavior
of the bus to detect any significant deviation. We leverage the
features of the detection algorithm to reduce the number of false
positive and increase the detection accuracy. Also, we examine the
performance of the algorithm with different tuning parameters and
the effect of attack intensity. We evaluate the effectiveness of our
approach using a real-world CAN dataset. The datasets represent
different attack scenarios. The main contributions of this paper are
in threefold:

(1) We develop a sliding window approach to identify sequen-
tial patterns of CAN bus logs which are used to character-
ize the adaptive CUSUM algorithm for detecting message
injection attacks in real-time.

(2) We use the model to differentiate normal and anomalous
messages at varied intervals based on significant changes
compared to a reasonably selected threshold value.

(3) We prototype and evaluate the performance of our de-
tection algorithm using CAN logs generated from a real
vehicle.

1.1 Threat Model
In this paper, we assume that an adversary can perform read and
write operation on the CAN bus. A read operation involves eaves-
dropping and intercepting messages while a write operation in-
volves forging, replaying and transmitting anomalous messages on
the bus. An adversary can gain access to the CAN network through
physical or remote attack surfaces to target a particular node or
compromise the entire network. To evaluate the effectiveness of our
detection algorithm, we investigate the following attack scenarios:

(1) Data injection attack: An adversary can execute a replay or
man-in-the-middle attack by sniffing the legitimate opera-
tion of the network. In this attack, a victim ECU message
structure is imitated and injected into the bus at random
to disrupt the normal working of the network.

(2) Denial of service (DoS) attack: In a DoS attack, the CAN
bus is flooded with too many messages of high priority
keeping the network busy and unavailable to other nodes.

(3) Fuzzy attack: In this attack scenario, the adversary injects
randomly spoofed messages of different ID. As a result,
nodes in the network receive lots of messages that can
cause malfunction of the vehicle.

These attacks vectors are connected. An adversary starts by
intercepting messages on the bus and reverse engineer them to un-
derstand their properties. The decoded messages are then injected
into the network to alter the vehicle behavior. With this, an adver-
sary can launch a DoS attack on the network that could paralyze
the entire operation of the vehicular networks. The severity of the
impact of potential attacks depends on the vehicular component
targeted by the adversary, i.e., an attack on the vehicle brake system,
steering, and accelerator will have more impact than an attack on
the infotainment system.

2 BACKGROUND
2.1 Controller Area Network Protocol

Overview
The controller area network (CAN) standard is a serial communica-
tion protocol that implements the carrier sense multiple access pro-
tocols with collision detection and arbitration on message priority
(CSMA/CD+AMP) developed for use in automotive applications. It
is principally the dominant communication protocol in the modern
automobile, as well as used in industrial automation and embed-
ded control applications. Messages sent in the bus are broadcast to
the entire node on the network. CAN efficiently implements static
fixed priority non-preemptive scheduling of messages through bus
arbitration. Nodes with a lower arbitration ID have higher priority
and always wins bus access. When a message wins arbitration and
starts transmission, it becomes non-preemptible.

The CAN bus protocol was designed to be a robust communi-
cation protocol with sophisticated error detection and handling
capabilities. However, CAN has different inherent security vulner-
abilities because it implements no security mechanism to protect
messages exchanged on the network. These vulnerabilities make it
attractive to cyber attackers to easily monitor, intercept and inject
malicious messages in the network.

An adversarial node can perform impersonation and replay at-
tacks based on spoofed messages to disrupt the operation of the bus
and compromise the driver and passenger safety. Also, since the
messages sent on the bus are not encrypted, reverse engineering
can be used to understand vehicle functions. Besides, arbitration of
the message protocol can be exploited through the transmission of
high priority messages continuously. An adversary can launch a
DoS attack using the message arbitration method by continuously
flooding the network with malicious messages that are of high
priority.

2.2 Sequential Change-Point Detection
Sequential anomaly detection describes a problem of detecting pat-
terns in an observation at which one or more abrupt changes occur
in a data sequence. Analyzing sequences in data is a statistical ap-
proach and theory for processing data in which the total number
of observations is not fixed but depends somehow on the observed
data as they become available. Therefore, anomaly detection prob-
lem can be modeled as a change-point detection problem [19]. This
work explores the performance of anomaly detection techniques
based on the sequential data model using the change-point ap-
proach to characterize the pre-change parameters with unknown
post-change parameters. A change-point is an instance in time
where the statistical properties of the data before and after this in-
stance are noticeably different. It represents a transition in the state
of the process that generates the data. The requirement for quality
control motivates the development of change-point detection [14].

In sequential change-point detection, the goal is to detect as
quickly as possible the point in time a change occurs in a statistical
model of data and flag an alert signifying the change while reducing
the false alarm rate. When an attack is detected at time t , the time
series shows a statistical change around or at a time greater than t .
For a quick response, the sequential hypothesis testing is often used
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when an attack occurs which saves memory and computation time.
Thus, we consider the CUSUM statistics which is the basis of the
change-point detection procedure. With a very light computation
load, CUSUM uses the features of sequential and non-parametric
tests to detect attacks in a time series data and is asymptotically
optimal for a wide range of change-point detection problems when
the time series are independent identically distributed (i.i.d.) with a
parametric model [21].

3 CUSUM FOR CAN ANOMALY DETECTION
CUSUM algorithm was first proposed by Page [15] and is based
on hypotheses testing developed for independently and identically
distributed random variables. The CUSUM algorithm is a sequen-
tial detection technique useful for detecting irregular patterns that
cause changes in an observation. To detect changes in the distribu-
tion, CUSUM periodically computes two sums, the upper control
limit and the lower control limit, which represents the cumulative
deviation between the expected value and the observed value. This
detection rule is a comparison of the cumulative sum with an adap-
tive threshold which is not only updated online but also keeps a
total memory of the useful information contained in the past ob-
servations. An essential feature of this algorithm is in determining
and defining the regular pattern of the dataset. Deviations relative
to this pattern are classified as anomalies when the upper or lower
control limit exceeds a certain threshold. Using a sliding window
approach, CUSUM can detect small shifts in statistical parameters
(e.g., mean) relative to the regular pattern. The output of the algo-
rithm is the potential list of anomalies along with the corresponding
plot of the time series and its anomalies. This detection algorithm is
a cost-effective and straightforward approach that can be adapted
to different vehicles. A computing module (dongle) running the
CUSUM algorithm can be connected to the vehicle OBD-II port and
act as a monitoring node on the CAN on the bus.

3.1 Adaptive CUSUM Algorithm
Adaptive CUSUM is proposed to solve the problem of unknown
parameters that vary over time. The combination of the process
of detecting change and parameter estimation is a practice consid-
ered to give better performance [18]. The idea is to estimate the
parameters in a continuous form with the CUSUM test starting im-
mediately regardless of the estimation accuracy. Since more sample
estimation could lead to more accurate estimation, the estimation
process continues while performing detection. Therefore, we model
the messages transmitted in the CAN bus using change-point detec-
tion procedure. A change can be modeled using two hypotheses, θ0
and θ1 with thresholds 0 and h. The first hypothesis represents the
statistical distribution of CAN message stream before the change
while the second represent the distribution after the change. The
essential steps in this algorithm are on how to decide between θ0
and θ1 and how to estimate the time of change efficiently from
the measured sample of the message instances. These steps are
called the detection and estimation steps respectively. We follow
an online approach to develop the CUSUM algorithm as described
in [3]. The framework of the adaptive CUSUM algorithm used to
model messages transmitted in the CAN bus is described below.

LetM = {M1,M2, . . . ,Mn } be a random set ofmessages observed
sequentially, and are independent and identically distributed on the
CAN bus network. MessageM represents a data frame on the CAN
bus and each of the messages are released sequentially. MessageM
is said to be "in-control" at first and eachMi follows a probability
density function (PDF), p (Mi ,θ ) depending on the deterministic
parameter θ . These parameters are assumed to be known mean µ
and variance σ 2. This messages may contain a change that occur
abruptly at time t̃c called the out-of-control that is modeled by an
instant modification to the value of θ . Therefore, θ = θ0 before
t̃c , pre-change, and θ = θ1 after that, post-change. When a change
occurs, an alarm should be signaled as soon as possible for a proper
action to be taken with few false positives. In the detection step, the
problem is to decide between two possible hypothesesH0 andH1
from observed messagesM . The instantaneous log-likelihood ratio
test is used to decide between the hypothesis i.e., test for signaling
a change, which is given by:

Si = ln
(
p (Mi ,θ1)

p (Mi ,θ0)

)
(1)

and the cumulative sum from 0 to n is:

Sn =
n∑
i=0

Si (2)

The decision function Gn and the change time estimate t̃c are
given by:

Gn = Sn − min
1≤tc ≤n

Stc−1 (3)

t̃c = min
1≤tc ≤n

Stc−1 (4)

Equations 2, 3 and 4 gives the direct form of the CUSUM al-
gorithm. For the real-time detection of change, the equations are
rewritten in a recursive form. The rewritten equations are given
by:

Sn = Sn−1 + Sn (5)
The decision function Gn compared to a positive threshold is

given by:

Gn = {Gn−1 + Sn }
+, (6)

where {a}+ = sup (a, 0). Once the abrupt change has been detected,
equation 4 can be used to estimate the change time tc from the
measured samplesM1,M2, . . . ,Mn efficiently. Thus, the sample size
Mi , the reference valuek which determines the level of past memory
held by the CUSUM statistics and the varying decision limits h are
the tuning parameters required for operating an adaptive CUSUM.

3.2 Detection Approach
A significant feature of the proposed detection approach is the
rate at which message instances are released and transmitted in
the CAN bus. In normal operation, each message instance has a
regular frequency or interval. When a message injection attack
occurs on the bus, this rate or interval will change significantly as
the ECUs under the attack will also be transmitting their message.
Thus, the rate of messages on the bus is increased more than double
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Table 1: Overview of the dataset

Type of Attack Total Normal
Messages

Injected
Messages

DoS Attack 3,665,771 3,078,250 587,521
Fuzzy Attack 3,838,860 3,347,013 491,847

Spoofing the drive gear 4,443,142 3,845,890 597,252
Spoofing the RPM gauge 4,621,702 3,966,805 654,897

the average rate. To characterize the message frequency, we use a
window-based technique to extract a fixed length of overlapping
windows from the attack-free dataset. The frequency of each mes-
sage instanceMi in the unique window ωi is maintained and they
form the training set.

The process steps we use in detecting abrupt changes in each
window follows as described in Section 3.1. We compute the PDF
p (Mi ) by calculating the µ and σ 2 of each sampleMi of the dataset
using the maintained frequency of message instances inωi . We then
calculate the CUSUM, Sn as described in equation 5 by calculating
the instantaneous log-likelihood ratio Si given by:

Si =
µM1 − µM0

σ 2
M

(
Mi −

µM1 + µM0

2

)
. (7)

When an abnormal event is detected, and there is a shift in the
process mean, the algorithm terminates and signals an alarm. The
algorithm considers at least five average run length (ARL) before
the alarm signals for the out-of-control ARL1 that is measured in a
steady state. The steady-state ARL values are based on the delayed
shifts in our chosen parameters.

4 EXPERIMENTAL VALIDATION
An evaluation was conducted using real CAN dataset available
for research purposes1. This dataset contains the normal vehicle
operation and four different types of message injection attacks to
disrupt the operation of the car. These attacks include DOS, fuzzy,
and spoofing of the gear and vehicle RPM. The recorded datasets
are logged through the OBD-II port of a real vehicle with complete
knowledge of the ground truth of the normal and injected messages.

The DOS attack dataset contains attacks where the most domi-
nant message with ID 0000 is injected every 0.3 milliseconds while
the fuzzy dataset contains attacks where random message IDs are
injected every 0.5 milliseconds to meddle with the vehicle opera-
tions. Other datasets are spoofing the drive gear and the rpm where
their respective IDs are injected every 1 millisecond. Table 1 shows
an overview of the overall number of messages in the dataset.

To measure the performance of our algorithm, we used the ARL
function. The ARL function is the expected number of samples
before alarm signals. The signal can be an actual shift in the process
mean or false alarm. TheARL function takes two valueswith respect
to θ and is given by:

ARL = Eθ [Nd ], (8)
where Nd is the detection time of the adaptive CUSUM algorithm,
and the parameter θ is the assumed constant for all message in-
stances. With respect to θ , the ARL function takes two values:

1https://sites.google.com/a/hksecurity.net/ocslab/Datasets/CAN-intrusion-dataset

(a) Message ID 1F1. (b) Message ID 153.

(c) Message ID 164. (d) Message ID 220.

Figure 1: Plots of CUSUM algorithm with reference parame-
ter k fixed to 0.5 and varied at (0.5 ∗σ ) for attack free dataset
θ = θ0, the in-control ARL0 is the expected number of samples
before a false alarm, and θ = θ1, the out-of-control ARL1 is the
expected number of samples before a shift in the mean is detected.
A specific value is required for ARL0 while we aim to minimize
ARL1 value over a range of process shifts. We also evaluate the per-
formance by calculating the true positive rate (TPR) and the false
positive rate (FPR) after measuring the number of true negative
(TN), true positive, false positive (FP), and false negative (FN).

4.1 Experimental Setup
The behavior of messages in the CAN bus can be learned by ex-
amining the average number of message instances and intervals
between the subsequent message of the same ID. Our goal is to
obtain the optimal parameters by learning these features.

We run our detection algorithm on the attack-free dataset to
achieve the lowest possible false positives based on the selected
interval, threshold, and window size. We learned the number of
message instances in 0.335 seconds window with a usual choice of
k = 0.5 and h = 3 as the CUSUM value is never greater than 3 as
shown in Figure 1. These parameter values are chosen based on the
performance of the algorithm on the attack-free dataset such that
the algorithm reaches desired performance in respect to the mean
time between false alarms ARL0 and mean detection delay ARL1.

As observed in the Figure 1, the CUSUM algorithm was run for
14 seconds for the attack-free dataset for different IDs with multiple
instances. The graph stays in-control, and there is no presence of
a change in the mean or false alarm as Gn is calculated. It is also
common to set the value of k at (0.5 to 1) of the standard deviation
σ . Therefore, we varied the value of k using the standard deviation
while keeping other variables constant as depicted in the Figure
1. We realized that k at (0.5 ∗ σ ) has a better chance of detecting
small shifts early than the usual choice of k = 0.5. Cumulative
results of the CUSUM are presented using the receiver operating
characteristics (ROC) showing how performance of the algorithm
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Figure 2: Adaptive CUSUMAlgorithm performance on vary-
ing thresholds for different window sizes using RPMdataset

(a) Message distribution (b) CUSUM statistic.

Figure 3: Plot of message instances against the time (secs)
and CUSUM algorithm for gear ID with a threshold h = 3 for
attack free dataset
changes with varying threshold for different window sizes as shown
in Figure 2. As the window size increases, the relative variability of
messages increases, thus resulting in higher TPR and FPR.

4.2 Experimental Results
We conducted three different experiments with the parameters ob-
tained from the attack-free dataset to evaluate the adaptive CUSUM
algorithm. As in the case of the attack-free dataset, we assume
that the first five windows of the attack datasets do not contain
anomalous messages instances and they form the training set used
in estimating the parameters. In our datasets, these windows do
not contain any attack data. We expect the mean of the message
instances to change at an unknown time. We set the detection
threshold h = 3 to detect attacks very quickly with low false alarm
rate. When an attack is detected, the decision function grows con-
tinuously after the change, and an alarm is signaled when it is
greater than the threshold.

For spoofing the gear and the RPM dataset, we identified the
injected IDs and plotted the message instances against time in sec-
onds in the samples and CUSUM graphs corresponding to both IDs.
Figure 3 shows the plots for the attack-free dataset instances and
the one-sided CUSUM chart for gear and rpm IDs. Visual inspection
reveals that there is no alarm signal as Gn < h.

The corresponding Figure 4 shows the same plots with the
CUSUM signaling an alarm when the values of Gn > h. As shown
in the figure, the algorithm analyzed the incoming messages to
calculate the CUSUM parameters and started detection when it

(a) Message distribution (b) CUSUM statistic.

Figure 4: Plot of message instances against the time (secs)
and CUSUM algorithm for gear ID with a threshold h = 3 for
spoofing the drive gear dataset
reached a steady state. If Gn ≈ 1 is greater than h = 3, the CUSUM
algorithm alert that change has occurred and an alarm is signaled
before the algorithm terminates. Similar plots were obtained with
spoofing the RPM gauge dataset and the DOS attack dataset. The
figures show the successful detection of the injected IDs with a very
short delay. By manual analysis of both datasets, we observe that
the first set of injections for the spoofing gear dataset was around
time t = 1.2682 while our detection algorithm signals the alarm
at t ≈ 1.30. This implies that the detection delay for the gear data
injection is nd ≈ 0.032. Similarly, manual inspection of the RPM
gauge dataset reveals the set of injections occurred at t = 0.9667
seconds, and our detection algorithm signaled the alarm at t ≈ 1.08
seconds which imply that the detection delay is on the average
of nd = 0.113. Furthermore, we conduct similar analysis on the
fuzzy and the DOS attack dataset, and their detection delays are
nd = 0.092 andnd = 0.165 seconds respectively. The corresponding
ROC curve for fuzzy attack dataset is shown in Figure 5.

To enhance the performance of our detection algorithm, we
remark that varying the required parameters k,h, and large enough
window size ω improves the detection accuracy. While executing
the algorithm at different time intervals, we obtained different
results, and the number of false alarms ranged between different
interval counts. Subsequently, when the threshold value is lowered
with the same window size, a degraded performance is noticed, i.e.,
the false positive rate increased significantly. Similarly, when the
window size is decreased using the same interval and threshold
values, we get high rate of false alarm.

Figure 5: ROC curve of varying thresholds for different win-
dow sizes using fuzzy attack dataset
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5 RELATEDWORK
Anomaly-based intrusion detection system has been applied to
traditional network-based systems to detect anomalous behaviors in
the network. As most messages in the CAN bus tend to be periodic,
detection approach using message inter-arrival time, entropy, and
frequency have been proposed to analyze and detect anomalous
behavior in the network [11–13, 16].

Taylor et al. [20] developed an anomaly detector by learning to
predict the next data word originating from each sender in the bus
using long-short-term memory (LSTM) recurrent neural network
for CAN bus anomaly detection. In [6] a deep learning based IDS
is proposed to monitor CAN packet broadcast on the network by
capturing the underlying statistical features of data and use them to
detect attacks. Also, [9] proposed a fuzzy algorithm to distinguish
between legitimate CAN messages generated by human driver
and the injected messages generated by an attacker. Our approach
differs from prior work because we focus on detecting anomalies
by identifying changes in the statistical properties of the observed
messages on the CAN bus based on the hypothesis testing.

Change-point detection has been applied to several systems in-
cluding wireless network protocols, application, and CPS [5, 8, 17,
22]. Tang et al. [17] used the non-parametric CUSUM test to find
abrupt changes in a process without any a priori statistical knowl-
edge and detected the real-time backoff misbehavior problem in
IEEE 802.11 based wireless networks. Huang et al. [5] proposed
the use of adaptive CUSUM algorithm for defending against false
data injection attacks in smart grid networks using a Markov-chain-
based analytical model. Similarly, [8] applied the CUSUM test as
a collaborative quickest detection model to identify changes in
distributed ad hoc networks. However, to the best of our knowl-
edge, this work presents the first application of the change-point
detection approach to identify anomalous behavior in CAN.

6 CONCLUSION
In this paper, we present an anomaly intrusion detection system
to identify message injection attacks on CAN bus. The proposed
approach is based on change-point detection techniques using adap-
tive CUSUM algorithm to detect statistical changes and intrusions
in CAN bus message stream. We utilized the instance of messages
in a sample window and carefully chosen tuning parameters to
identify differences in the statistical properties and detect irregular
patterns of the messages. Analytical results have shown that the
proposed detection algorithm can efficiently detect data injection
attacks with minimum detection delay. Through our experiment,
we showed that when the required parameters are carefully se-
lected, there is high detection accuracy with low false alarm rate.
Future work will compare the performance of the adaptive CUSUM
algorithm with other anomaly detection approach and analyze the
algorithm performance under different attack scenarios and inten-
sity. Additionally, we aim to find other interesting characteristics
of the message that can be used for hypothesis testing.
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