
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 1

CANASTA: Controller Area Network
Authentication Schedulability Timing Analysis

Omolade Ikumapayi∗, Habeeb Olufowobi†, Jeremy Daily‡, Tingting Hu§, Ivan Cibrario Bertolotti¶,
Gedare Bloom∗

∗University of Colorado Colorado Springs, Colorado Springs, CO, USA
†University of Texas at Arlington, Arlington, TX, USA

‡Colorado State University, Fort Collins, CO, USA
§University of Luxembourg, Faculty of Science, Technology and Medicine (FSTM), Luxembourg

¶National Research Council of Italy, Institute of Electronics, Computer and Telecommunication Engineering
(CNR-IEIIT), Turin, Italy

{oikumapa, gbloom}@uccs.edu, habeeb.olufowobi@uta.edu, jeremy.daily@colostate.edu,
tingting.hu@uni.lu, ivan.cibrario@ieiit.cnr.it

Abstract—The Controller Area Network (CAN) dominates
in-vehicle networking systems in modern vehicles. CAN was
designed with low-latency and reliability as key features. Au-
thenticity of a CAN frame was not considered in the design,
thus, most in-vehicle network nodes inherently trust received
messages as coming from a legitimate source. As a result, it is
trivial to program (or hack) a network node to spoof traffic.
Authentication is challenging for CAN and related protocols,
such as SAE J1939, due to limited frame sizes and high bus
utilization. Adding a message authentication code (MAC) as a
separate message can unduly stress the real-time delivery of
safety-critical messages. Although this stressor is well-known,
the impact of authentication protocols on real-time message
delivery in CAN has not yet been thoroughly examined. In
this paper, we provide the first comprehensive analysis of real-
time schedulability analysis applied to authentication schemes for
CAN, CAN Flexible Data-rate (CAN FD), and CAN extra long
payload (CAN XL). We formulate the response time analysis for
addition of MACs and periodic transmission of MACs, and we
examine their impact on two case studies and through evaluation
with randomized schedulability experiments over a wide range
of message sets.

Index Terms—Controller Area Network, CAN FD, CAN XL,
Response Time Analysis

I. INTRODUCTION

THE ability for messages to meet real-time deadlines is a
hallmark of the controller area network (CAN) protocol.

Discovery of response time analysis (RTA) for CAN was
a breakthrough that enabled vehicle designers to utilize bus
bandwidth more effectively while ensuring that the delay
incurred by safety-critical messages is bounded [1]–[3]. The
expectation from analysing the worst-case response time of a
CAN message is the reliability that the message will arrive
at its destination in no more than the derived maximum time
interval from the release time to completion of message trans-
mission. While reliable delivery of messages is guaranteed
with the CAN message acknowledgement process, provisions
for authenticating the legitimacy of the message are missing
from the protocol. Therefore, an application layer approach
uses a message authentication code (MAC) to provide a

cryptographic checksum on message transmission to ensure
content integrity (no bits are modified) and origin integrity
(no sender is impersonated) when the MAC is validated by
the message recipient.

The AUTOSAR Specification of Secure OnBoard Commu-
nication (SecOC) [4] defines requirements for cryptographic
authentication mechanisms that can be used to authenticate
protocol data units (PDUs) for different wired bus architectures
such as CAN or automotive Ethernet. In SecOC terminology,
the authentication information comprises a Freshness Value
(FV) and an Authenticator. The Authenticator is normally
a cryptographic message authentication code (CMAC) using
symmetric key encryption, although the specification allows
for digital signatures under asymmetric keys too. AUTOSAR
allows for the CAN designer to select the authentication
schemes, key lengths, CMAC and FV lengths. The Authen-
ticator is appended to a PDU, while the FV is synchronized
among the communicating electronic control units (ECUs).
A truncated FV may be appended to the Authenticator to
assist in this synchronization, and it is also possible to omit
an FV completely. The use of a CMAC and FV is intended
to prevent attacks such as meddler-in-the-middle (MitM) and
masquerade attacks [5]. The CMAC and FV provide cryp-
tographic data integrity more than just a checksum used to
detect an error. Additional bits reserved for the CMAC and
FV for authentication enhance the strength of the encryption
by reducing the probability of successful hash collisions and
guessing attacks. Although key lengths of at least 128 bits
are suggested, the specification identifies several profiles for
truncation of MAC and FVs with the caveat that only MACs
of 64 bits or longer may be considered sufficient to prevent
guessing attacks. Table I summarizes the three profiles defined
in SecOC (release 4.3.1). Note that profiles 1 and 3 both
require 32 bits, while profile 2 fits in 24 bits but provides no
protection against replay attacks due to the lack of an FV. So
the truncated CMAC and FV are mainly useful in CAN only
in case the data payload of the authenticated messages are less
than or equal to 32 bits as well, i.e., DLC ≤ 4. Otherwise the

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 2

TABLE I: Truncated Bit Lengths of AES-128 MAC (most
significant bits kept) and Freshness Values (least significant
bits kept) in SecOC Profiles.

Name (Mnemonic) CMAC Length FV Length
Profile 1 (24Bit-CMAC-8Bit-FV) 24 8
Profile 2 (24Bit-CMAC-No-FV) 24 0
Profile 3 (JasPar) 28 4

Fig. 1: Transmission times over 1 Mbps CAN bus with varying
data payload sizes using SecOC profiles.

authenticator will require another message frame to be sent
anyway, and so the full 64-bit data payload of the additional
frame may as well be utilized. Without truncation, the CMACs
typically will be 64- or 128-bits, while FVs are at most 64 bits.

Fig. 1 shows how the transmission times of messages in-
crease non-linearly with the use of AUTOSAR SecOC profiles
on the classical CAN bus—an 8 byte maximum payload—
incurs untenable overhead for message frames with payloads
greater than 3 bytes due to the need to fragment the message
PDU plus the CMAC and FV into multiple frames. The
baseline payload varies from 0 to 8 bytes with transmission
time in a 1 Mbps CAN bus assuming maximum bit stuffing.
(The fastest CAN bitrate is 1 Mbps with other common high-
speed bitrates of 250 or 500 kbps.) Adding MACs increases
the transmission time by at least the number of bits in the
MAC and FV, but the real problem comes when additional data
frames are needed to transmit the excess that does not fit in
the 8-byte data payload. The frame overhead greatly increases
the transmission time overhead incurred by the authentication.
As a result, it is generally well understood that SecOC is
not directly supportable for classical CAN, although it can
be supported with the Controller Area Network Flexible Data-
rate (CAN FD) and Controller Area Network extra long (CAN
XL) payload protocols. Utilizing CAN FD messages to include
MAC tags is also proposed in the work-in-progress SAE
J1939-91a draft standard. However CAN remains a popular
protocol, thus authentication schemes are proposed that aim
to reduce the authentication overhead [6]–[8].

Due to the relatively large overhead of MACs compared to
CAN data payloads, another approach besides (or in addition
to) truncation is to transmit MACs periodically [9], [10].
Two variations on this approach are common, which we will
refer to as skipping and batching. Skipping authenticates some
messages in a sequence, i.e., authenticating one out of n
messages. The batching approach authenticates a batch of
several messages with one MAC, for example, Daily et al. [10]
suggest authenticating all messages in a one second interval

for CAN/J1939 traffic. In this batching scheme, messages
were authenticated in batches based on the SAE J1939 Source
Address, which is the last 8 bits in the extended CAN ID. This
approach is sensitive to arrival order of the messages. These
two approaches will incur different computational performance
overhead for the cryptographic operations—skipping authenti-
cation means less work. The approach that skips messages only
provides a probabilistic authentication, since those skipped
messages will not have their integrity checked. The batched ap-
proach will still incur a similar (slightly smaller) cryptographic
computational overhead while authenticating every message,
but still ensures that every message’s authenticity can be
checked. Both skipping and batching however have the same
benefit to the network overhead, because they both make MAC
transmissions periodic. We treat these approaches identically
and refer to them both as periodic MAC transmission. We
ignore the fact that, prior to transmitting a message, software
copies it into a buffer that the CAN controller will read from.
Similarly, we do not discuss the need for the ECU to copy the
message from its receive (RX) buffer before the MAC arrives
and to hold it there until the MAC completes when utilizing
the periodic MAC transmission. This overhead is separate from
the RTA and is beyond the scope of our study.

Despite a plethora of authentication schemes for CAN, the
prior work does not provide a sound, rigorous methodology
to understand the real-time performance impact of adding
authentication. In this paper, we provide a comprehensive
approach to show how such impact can be quantified and
understood based on the well-known theory of RTA for CAN
schedulability. The contributions of this paper include:

• RTA formulation for CAN FD and CAN XL;
• RTA formulation for the addition of MACs to CAN, CAN

FD, and CAN XL;
• RTA formulation for the use of periodic MACs with

CAN, CAN FD, and CAN XL;
• and evaluation of SecOC authentication for CAN, CAN

FD, and CAN XL, with case studies and randomized
schedulability experiments.

II. RELATED WORK

The network overhead introduced by cryptographic schemes
for enhancing message authenticity in CAN—such as
MaCAN [6] which employs shared keys between group of
nodes—motivates deriving the impact authentication protocols
have on the timely arrival of messages for automotive applica-
tions. Lin et al. [11] use MACs to protect against masquerade
and replay attacks. However, they observed that adding MAC
bits increases the message transmission time especially when
they are fragmented over multiple messages. Fragmentation
easily leads to violation of timing constraints and also affects
system performance of CAN. In their efforts to reduce the
negative impact on automotive electronic systems, the au-
thors used mixed-integer linear programming-based technique
(MILP) to assign priorities and allow multiple ECUs to share
a MAC for design flexibility. Groza et al. [12] propose a
different view on authentication that focuses on embedded
authenticators for the CAN ID within the identifier field itself,

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 3

which may allow for faster detection of spoofed messages by
authenticating the sender before the data payload transmis-
sion. Nürnberger et al. [13] proposed vatiCAN, a backward-
compatible authentication mechanism based on a lightweight
keyed-Hash Message Authentication Code (HMAC). The au-
thors analyzed the authentication overhead and concluded that
their implementation, which authenticates every single CAN
frame, would result in an impractical bandwidth overhead.
Van Bulck et al. [14] presented an authentication mechanism
that allows multiple IDs to share the same key in order to
save memory. They truncated the MAC by removing the eight
least significant bytes and used hardware-level cryptography
to achieve a reduction in MAC computation times.

Xie et al. [15] propose a security enhancement by adding
MACs to messages in CAN FD taking advantage of the laxity
interval from the lower bound to the deadline limited to
parallel applications.

Other tangentially related work has examined the cryp-
tographic overhead for securing CAN and CAN FD mes-
sages with respect to impact on the real-time performance
of software tasks. Petit et al. [16] investigated the impact of
elliptic curve digital signature algorithm as an authentication
mechanism on braking distance in vehicular networks. They
conducted analysis experiments to derive the total overhead
in the packet size and when transmitting data in vehicle-to-
vehicle communications. They highlighted the impact of au-
thentication key size and proposed optimizations mechanisms
to reduce the overhead. Wu et al. [17] analyze timing overhead
from cryptography algorithms on Infineon’s Aurix processors
and find that software implementation of the AES-128 cryp-
tographic algorithm cannot meet the timing constraints of
distributed automotive cyber-physical systems. Hence, hard-
ware acceleration is a common approach to mitigate the
cryptographic overheads. To reduce the computational cost
of using a hardware security module (HSM), Xie at al. [18]
explore task assignment and message scheduling approaches
to minimize the costs associated with security functions on
CAN FD messages. Lesi et al. [19] also used MILP tech-
niques to derive a schedulable task set for quality-of-control
(QoC) requirements in the presence of attacks on sensor data.
Their work provides analysis of the effect that computational
overhead has on schedulability of control tasks and QoC in
the software layer of embedded systems with application to
an automotive case study. Ghosh et al. [20] propose a timed
automata-based model for checking schedulability of control
tasks augmented with reliability guaranteed by sensor fault
mitigation techniques and security based on authentication
techniques; however, their scheduling policy is limited to static
scheduling where the order in which threads are executing is
controlled manually.

Furthermore, Bordoloi and Samii [21] presented the frame
packing problem for CAN FD and proposed an optimization
approach for selecting and packing payloads into frames to
minimize bus utilization. Their approach considers timing
constraints and potential repacking of messages to satisfy
deadlines and formulates the best- and worst-case transmis-
sion times of CAN FD. This formulation is flawed as the
specification used was before ISO standardization which has

been updated, and does not consider the 29-bit identifiers.
Similarly, De Andrade et al. [22] presented an analytical worst-
case response time analysis of messages in CAN FD. However,
their analysis is based on the obsolete CAN transmission time
presented by Tindell et al. [3], which has since been revised
by Davis et al. [1].

Our work provides the first comprehensive approach to
formulate RTA for CAN, CAN FD, and CAN XL when
adding MACs and with the optimization of periodic MAC
transmission. Our methodology can be extended for different
authentication protocols and proposals.

III. CLASSICAL CAN RESPONSE TIME ANALYSIS

We adopt the widely used response time analysis for CAN
devised by Tindell et al. [2], [3] and revised by Davis et al. [1].
The terminology and formulation of this model mimics that
of task schedulability based on response time analysis with
the replacement of tasks by messages and jobs by message
instances. Table II summarizes our notation.

The priority of each message is defined by its identifier
(ID), which is a unique integer of 11 bits with base frame
formats or 29 bits when using the extended CAN frame
format. Lower numeric ID values indicate higher priority.
Messages may be periodic (time-triggered) or sporadic (event-
triggered). The former release message instances every period
time unit and the latter release message instances separated
by at least some minimum inter-arrival time. Each instance is
subject to jitter that varies based on computational overheads,
queueing delays, network availability, and physical effects in
the communication medium.

Without loss of generality, we assume that a sequence of
n messages in a set M are ordered as M1 through Mn with
the ID of any message Mi equal to i. A message Mi’s worst-
case response time (WCRT) is the maximum of its instances’
response times in a level-i busy interval, which is a span of
message transmissions with priorities greater than or equal
to i. The busy interval ends when an instance transmits with
priority less than i, or when the bus is idle. Mi’s WCRT is
given by

Ri = max
q∈[0,Qi−1]

Ri(q) (1)

where Qi is a count of instances for Mi that release during
the busy interval. A message instance q in the busy interval
has a WCRT of Ri(q). These variables are found by solving

Ri(q) = Ji + wi(q)− qPi + CDi (2)

Qi =

⌈
ti + Ji
Pi

⌉
(3)

The (queueing) jitter of the frame given as Ji providing an
upper bound on the time between when an instance releases
and when it is ready, i.e., attempting to arbitrate for bus access.
Pi is the period (or minimum inter-arrival time) of Mi. The
maximum transmission time of q is given by CDi

.
The contents of a message instance determine its transmis-

sion time, which is an integer multiple of τbit, the transmission
time of a single bit. A message instance has a data payload be-
tween 0 and 8 bytes in length, which is given in the instance’s

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 4

TABLE II: Table of Notation for Response Time Analysis

Variable Definition
M set of messages M = (M1,M2, . . . ,Mn)

Mi ∈ M the ith message
Di message i’s payload length or DLC
Cx transmission time with x-byte payload
Pi message period/inter-arrival time
Ri worst case response time
Ji queuing jitter
wi queuing delay
Bi blocking time
Ii interference time

τbit the transmission time of a single bit
τdbit the transmission time of a data bit (CAN FD)
Ei the error overhead

βi, αi authentication frames for Mi

IFS
(3)

Base ID
(11) RT

R

SO
F

ID
E

FD
F

DLC
(4)

Base ID
(11)SO

F

SR
R

ID
E ID Extension

(18) RT
R

FD
F

r0

Data
(8Di)

CRC
(15) C

D
EL

A
C

K

A
D

EL EOF
(7)

19

39 28

Base format

Extended format

Nominal bit rate

8Di

Bit stuffing No bit stuffing

Fig. 2: Classical CAN Frame Format (Stuff Bits Not Shown)

Data Length Code (DLC). The worst-case transmission time
CDi

of a message Mi depends only on the frame format (base
or extended) and on the payload length Di in bytes, i.e., the
value of the DLC. CDi can be calculated considering the worst
possible bit stuffing pattern, that is, 5 dominant bits (including
the SOF, to trigger the injection of the first stuff bit) followed
by an alternating pattern made up of groups of 4 recessive and
4 dominant bits [23], [24]. Then for the base frame format the
worst-case transmission time is given by

C
(C,b)
Di

= (55 + 10Di)τbit, (4)

where the superscript (C, b) denotes the classical base frame
format. For RTA, this value includes the three mandatory
intermission frame space (IFS) bits that act as a spacer between
frames, although technically they are not part of the CAN
frame itself. As shown in Figure 2, using the extended instead
of the base frame format adds 20 bits to the best-case (no
stuff bits) frame length and up to 5 more stuff bits, so the
worst-case transmission time becomes

C
(C,e)
Di

= (80 + 10Di)τbit (5)

where the superscript (C, e) denotes the classical extended
frame format.

Depending on the frame format of a message instance Mi

the value of CDi
will take on either Eq. 4 or Eq. 5. It is

worth noting that the theoretical worst-case bit stuffing pattern
mentioned previously cannot occur in practice due at least
to the fixed-form bits in the CAN frame which necessarily
break it. Therefore in both base and extended frame cases the
formula for CDi

gives a slightly pessimistic upper bound.
An upper bound on how long a message instance can spend

waiting to transmit is wi(q) and the worst-case delay wi, given

an error model is found by solving the recurrence

wn+1
i (q) = Bi + E(wn

i + CDi
) + qCDi

+ Ii (6)

starting with w0
i (q) = Bi + qCDi

and terminating at
wn+1

i (q) = wn
i (q). Where Bi is the maximum blocking time

caused by lower-priority messages already transmitting on the
bus when q is ready,

Bi = max
k>i

(CDk
), (7)

and Ii for interference caused by higher-priority messages that
beat q during arbitration:

Ii =
∑
k<i

⌈
wi + Jk + τbit

Pk

⌉
CDk

. (8)

τbit is the time needed to transmit a single bit, which is the
multiplicative inverse of the bus bitrate.

The length of the level-i busy interval is given by ti, and it
is found by solving the recurrence relation

tn+1
i = Bi + Ei(t

n
i) +

∑
k≤i

⌈
tni + Jk

Pk

⌉
CDk

(9)

starting with t0i = CDi
and terminating at tn+1

i = tni .
Message error handling, Ei is formulated as

Ei(ti) =
(
31τbit +max

k≥i
(CDk

)
)
F (ti) (10)

with 31 bits for the error signal. F (ti) is a step function
defined by a fault model to determine an upper-bound on errors
over a time interval. It must be a monotonic non-decreasing
function. Broster et al. [25] suggest a harsh environment may
induce an expected number of errors at 30 faults per second.

A message is said to be schedulable if its WCRT is less than
or equal to its deadline. Message deadlines may be implicit,
i.e., equal to their period, or they may be explicit (constrained).
Explicit deadlines are often used for safety-critical messages
that may have a long period, e.g., 500 ms, but require a
response much sooner.

IV. CAN FLEXIBLE DATA-RATE (FD) RESPONSE TIME
ANALYSIS

The Controller Area Network Flexible Data-Rate (CAN FD)
protocol extends classical CAN primarily with the ability to
accommodate larger data payloads and to switch to a higher
bitrate for portions of the frame transmission. CAN FD frames
accommodate up to 64 data bytes. The payload length however
is still encoded as a 4-bit DLC value, so only a few predefined
lengths are available. For this reason, we introduce a function
z(Di) that gives the smallest feasible payload length able to
accommodate Di bytes. The function is monotonic and is
defined as:

z(Di) =



Di (0 ≤ Di ≤ 8)
12 (8 < Di ≤ 12)
16 (12 < Di ≤ 16)
20 (16 < Di ≤ 20)
24 (20 < Di ≤ 24)
32 (24 < Di ≤ 32)
48 (32 < Di ≤ 48)
64 (48 < Di ≤ 64)

. (11)

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 5

TABLE III: Table of Notation, CAN FD Bit Stuffing

Part of the frame Length Stuff bits
Bits between SOF and BRS, included nb sb
Bits after BRS and before the CRC field nd sd
Bits in the CRC field nf sf
Bits after CDEL nu su

TABLE IV: Variable Values, CAN FD Bit Stuffing

Var. Base Frame Extended P. length P. length
Format Frame Format Di ≤ 16 Di > 16

nb n
(b)
b = 17 n

(e)
b = 36 (independent of Di)

nd nd = 5 + 8z(Di) (monotonic in Di)
nf (independent of format) n

(Di≤16)
f = 22 n

(Di>16)
f = 26

nu nu = 13

In addition, CAN FD optionally supports a bitrate switch
(BRS) to a higher bitrate for part of the frame, where the bit
transmission time becomes τdbit ≤ τbit.

Worst-case frame length calculation becomes more com-
plex in CAN FD than in classical CAN because of two
factors. Firstly, CAN FD replaces the on-demand bit stuffing
of classical CAN with fixed bit stuffing in the CRC field
(stuff count, CRC sequence, and CDEL). There, a stuff bit is
unconditionally injected every four CRC field bits, regardless
of bit stream contents. Secondly, part of the frame and any
stuff bits it contains may be transmitted at a higher bitrate (bit
transmission time τdbit instead of τbit) due to BRS.

As shown in Figure 3 and summarized in Table III, a CAN
FD frame can be divided into four parts for worst-case CDi

calculation:
1) nb bits between the SOF and BRS bit, transmitted with

on-demand bit stuffing at the nominal bitrate, except for
the BRS bit where bitrate switching (to the data bitrate)
may take place.

2) nd bits transmitted with on-demand bit stuffing at the
data bitrate after BRS and before the CRC field.

3) nf bits in the CRC field, transmitted with fixed bit
stuffing at the data bitrate, except for the CDEL bit (the
last bit of the CRC field) where bitrate switching (back
to the nominal bitrate) may take place.

4) nu bits after the CRC field, transmitted without bit
stuffing at the nominal bitrate. In CAN FD this part
of the frame may consist of up to two ACK slots,
instead of one like in classical CAN. This is because the
standard [26, Section 10.4.2.7] specifies that nodes shall
accept overlapping ACKs, sent by different receivers,
which are up to two bits long overall. This leads to the
value of nu we consider in schedulability analysis. The
ACK slot(s) are followed by the 1-bit ACK delimiter,
and the 7-bit end of frame (EOF).

As before, for RTA nu includes the three mandatory IFS
bits. Table IV gives the values of the above variables depend-
ing on the frame format (base or extended) and the payload
length. n = nb + nd + nf + nu is the total number of
unstuffed bits in the frame. The worst-case number of stuff
bits sb needed by the first nb bits of a CAN FD frame can be
calculated considering the worst-case pattern for on-demand
bit stuffing, which in CAN FD is still the same as for classical

CAN. We obtain:

sb =

⌊
nb − 1− 1

4

⌋
. (12)

The two corrective terms −1 in the numerator of (12) are
needed to take into account that the primer of the worst-case
bit stuffing pattern consists of 5 bits instead of 4, and to avoid
counting in sb a stuff bit to be injected immediately after BRS,
because that stuff bit is transmitted at the data rather than the
nominal bitrate.

The number of unstuffed bits at the same value up to and
including BRS after the last stuff bit transmitted at the nominal
bitrate is given by:

rb = (nb − 1)− 4sb. (13)

A value rb = 4 indicates that a stuff bit must be transmitted,
at the data bitrate, immediately after BRS. The worst-case
number of stuff bits sd needed by the next nd bits is then
given by:

sd =

⌊
rb + nd − 1

4

⌋
. (14)

In (14) the −1 at the numerator avoids counting an on-
demand stuff bit to be injected immediately before the CRC
field. This is because there is always a fixed stuff bit at the
very beginning of the CRC field and the standard specifies
that no two consecutive stuff bits may appear in the frame.

Finally, the number of fixed stuff bits sf needed by the nf

bits in the CRC field is:

sf =
⌈nf

4

⌉
. (15)

In this equation, we use a ceiling instead of a floor operator
to count the stuff bit injected before the first bit of the CRC
field. Due to the allowed values of nf no stuff bit is ever
required immediately after CDEL. All subsequent nu bits up
to the end of the frame are transmitted without bit stuffing, so
it (trivially) is su = 0.

The total, worst-case transmission time CDi
of a message

Mi can be expressed as the sum of the contributions of the
four parts of the frame just described, that is

C
(F)
Di

= (nb + sb + nu)τbit + (nd + sd + nf + sf)τdbit (16)

where the superscript (F) is used to denote CAN FD.
Equation (16) considers the BRS and CDEL bits to be en-

tirely transmitted at the nominal and data bit rate, respectively,
although this is not strictly true because in those bits BRS
takes place. The equation is still correct because the CAN
standard [26, p. 46] stipulates that “the sum of the length of
these two bits is the same as the sum of one bit of the nominal
bit time and one bit of the data bit time.”

Substituting the values of Table IV and (12–15) into (16)
four cases are possible, depending on the frame format and
payload length Di, in bytes:

C
(F,b,Di≤16)
Di

= 33τbit + (35 + 10z(Di))τdbit

C
(F,b,Di>16)
Di

= 33τbit + (40 + 10z(Di))τdbit

C
(F,e,Di≤16)
Di

= 57τbit + (34 + 10z(Di))τdbit

C
(F,e,Di>16)
Di

= 57τbit + (39 + 10z(Di))τdbit

(17)

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 6

A
C

K

A
C

K

IFS
(3)

IFS
(3)

Base ID
(11) R

R
S

SO
F

ID
E

FD
F

re
s

B
R

S

ES
I DLC

(4)

Base ID
(11)SO

F

SR
R

ID
E ID Extension

(18) R
R

S

FD
F

re
s

B
R

S

Data
(8z(Di))

Stuff
Count

(4)

CRC
(17)

CRC
(21)

C
D

EL

C
D

EL

A
C

K

A
C

K
A

D
EL

A
D

EL

EOF
(7)

EOF
(7)

nb
(b) = 17

nb
(e) = 36 nd = 5 + 8z(Di)

nf
(z(D

i
) ≤ 16) = 22

nf
(z(D

i
) > 16) = 26 nu = 13

nu = 13

Base format

Extended format

“Short” payload

“Long” payload

Nominal bit rate Data bit rate Bit rate transition

Fig. 3: CAN FD Frame Format (Stuff Bits Not Shown)
Fixed bit stuffing
nfs = 109 + 8Di

Control field

ADS

CRC field ACK field

Dynamic bit stuffing
nds = 16

Arbitration field Data field

Base ID
(11) R

R
S

SO
F

ID
E

FD
F

X
LF

re
sX

L

A
D

H

D
H

1

D
H

2

D
H

6

D
L1 SDT

(8) SE
C DLC

(11)
SBC
(3)

PCRC
(13)

VCID
(8)

AF
(32)

Data
(8Di)

CRC
(32)

FCP
(4)

IFS
(3)

EOF
(7)

Nominal bit rate Data bit rate

nb = 18 nd ≤ 83 + 8Di nf = 36 nu = 16
Receivers shall tolerate up to 6 DH bits

DAS

D
A

H

A
H

1

A
L1

A
H

2

A
C

K

A
D

EL

Fig. 4: CAN XL Frame Format (Stuff Bits Not Shown)

TABLE V: Table of Notation, CAN XL Bits

Var Value Description
nb 18 Bits from SOF to ADH included
nd 83 + 8Di Bits between ADH and the CRC field
nf 36 Bits in the CRC field
nu 16 Bits after the CRC field
nds 16 Bits with dynamic bit stuffing
nfs 109 + 8Di Bits with fixed bit stuffing

Here the superscript indicates the frame format (F, b for base
and F, e for extended) and the size of the data payload below
(inclusive) or above 16 bytes. The remainder of the RTA for
CAN FD is unmodified, i.e., the WCRT are solved for Eq. 1
selecting the equation for CDi from Eq. 17 based on the frame
format and the value of Di.

V. CONTROLLER AREA NETWORK EXTRA LONG (CAN
XL) RESPONSE TIME ANALYSIS

The Controller Area Network extra long payload (CAN XL)
extends the CAN and CAN FD protocol with much larger
data payload. CAN XL is currently not standardized and our
analysis is based on a draft standard that remains subject to
change [27]. Similar to CAN FD, CAN XL supports bitrate
switching and data frame transfer with two bit rates. Bitrate
switching is required in CAN XL, and extended frame formats
are not supported (no 29-bit identifier). In the arbitration phase,
a maximum of 1Mbit/s is allowed with a limited payload
length, similar to the classical CAN bit rate requirement.
However in the data phase, the bitrate can be 10Mbit/s or
higher while the bit rate is not limited by the network length.
With CAN XL accommodating up to 2048 bytes of data,
Ethernet frames can be packed in CAN XL messages.

CAN XL adds more overhead than CAN FD in terms of
the fixed stuff bits in the data phase of the frame and dynamic
bit stuffing in the header CRC as a stuff bit is added after 10
data bits.

As shown in Figure 4, a CAN XL frame can be divided into
several parts for frame length calculation. Table V summarizes
the notation used in the description that follows.

1) The first part of the frame consists of nb bits transmitted
at the nominal bit rate. They comprise the SOF bit, the
arbitration field, as well as the resXL bit and the ADH
bit of the Arbitration to Data Sequence (ADS) at the
beginning of the control field.

2) It is followed by nd bits transmitted at the data bit rate,
encompassing the remainder of the control field and the
data field. nd depends linearly on Di.

3) The CRC field immediately follows the data field and
consists of nf bits.

4) The last part of a CAN XL frame is very similar to
classical and FD frames; it consists of nu bits.

Although there are only two DH bits in the control field
of a nominal CAN XL frame, we considered six in frame
length calculation. This is because the draft standard [27,
Section 6.8.5.4] specifies that CAN XL nodes shall tolerate a
minimum of one and a maximum of 6 DH bits without flagging
a form error, with the purpose of nullifying the phase error due
to the change of transceiver operating mode and bit encoding
method. Unlike in CAN FD, CAN XL bit rate transitions take
place at bit boundaries rather than at the sampling point of
BRS and CDEL. As a consequence, in CAN XL there are no
bits transmitted partly at the nominal and partly at the data bit
rate.

The worst-case frame length of a CAN XL frame carrying
a payload of Di bytes without taking bit stuffing into account
is therefore:

(nb + nu)τbit + (nd + nf)τdbit. (18)

Bit stuffing is performed in two different ways in two non-
overlapping regions of the frame, while the rest is not bit
stuffed. Most importantly, none of these regions contain a bit

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 7

Ai + Fi Ai + Fi

Ai + Fi

Di Di Di

Di Di Di

Data
Payload

Data
Payload

Data
Payload

Pi Pi

No MAC

Data
Payload

Data
Payload

Data
Payload

MAC
+ FV …

Ai + Fi

MAC
+ FV …

Ai + Fi

MAC
+ FV …

MAC

βi full frames

Per. MAC

Di

Data
Payload

Di

Data
Payload

Di

Data
Payload

MAC
+ FV …

βi full frames
~ 0 ≤ αi ≤1 partial frame

~

MAC
+ FV …

βi full frames
~ 0 ≤ αi ≤1 partial frame

~

Data payload

MAC + FV

0 ≤ αi ≤1 partial frame
ρi

Fig. 5: Comparison of frame sequences for message Mi with
No MAC, MAC and Periodic MAC (ρi = 2Pi) transmission.
(Frame header, CRC, and trailer not shown; no interfer-
ence/blocking by other messages.)

rate transition, which makes calculations simpler than for CAN
FD. In particular:

1) The first nds bits of the frame (SOF plus arbitration
field) are bit stuffed with dynamic bit stuffing exactly as
in classical CAN. The worst-case number of stuff bits
needed in this region is:

sds =

⌊
nds − 1

4

⌋
= 3, (19)

where the corrective term −1 in the numerator is needed
to take into account that the primer of the worst-case bit
stuffing pattern consists of 5 bits instead of 4. Dynamic
stuff bits are transmitted at the nominal bit rate.

2) The nfs bits starting at DL1 and up to the end of the
CRC in the CRC field are subject to fixed bit stuffing,
in which one stuff bit at the opposite polarity of the
previous one is unconditionally inserted every 10 bits.
The number of stuff bits in this region is then:

sfs =
⌊nfs

10

⌋
=

⌊
109 + 8Di

10

⌋
= 10 +

⌊
9 + 8Di

10

⌋
.

(20)
Unlike in (19), there is no corrective term because no
primer sequence is needed to initiate fixed bit stuffing.
Fixed stuff bits are transmitted at the data bit rate.

By combining (18)–(20) we can finally express the worst-
case transmission time C

(X)
Di

of a CAN XL message Mi as:

C
(X)
Di

= (nb + nu + sds)τbit + (nd + nf + sfs)τdbit

= (18 + 16 + 3)τbit

+

(
83 + 8Di + 36 + 10 +

⌊
9 + 8Di

10

⌋)
τdbit

= 37τbit +

(
129 + 8Di +

⌊
9 + 8Di

10

⌋)
τdbit.

(21)

Using this formulation from Eq. 21, the rest of the RTA for
CAN XL proceeds as in the original CAN with WCRT solved
for Eq. 1.

VI. MAC RESPONSE TIME ANALYSIS

Cryptographic approaches for authentication append a mes-
sage authentication code (MAC) to transmitted data. A min-
imum of 64 bits is considered necessary to provide some
level of protection from successful spoofing attacks [28]. In
automotive applications, full MACs are therefore typically 8 or
16 bytes long, and most authentication protocols furthermore
require the transmission of freshness values (FVs) to prevent
replay attacks. CAN data frames can only carry up to an
8-byte payload, and therefore it cannot append a full MAC
with FV to any transmitted data. As a result, the state-of-the-
art approaches provide weakened forms of authentication via
truncated, batched, or periodically transmitted MACs. In the
following we examine the addition of MACs to CAN with
respect to its response time analysis.

Including MAC overhead in the CAN response time
presents two key challenges: (1) the generation of additional
message frames is needed for each time that the data pay-
load exceeds the maximum frame’s payload length; (2) these
additional message frames are generated at the same time
as the message instance, which slightly changes the periodic
message model to accommodate for multiple instances per
release. Interestingly, some vehicle manufacturers do generate
multiple periodic message instances of the same ID, which
has not been considered by the prior work in CAN response
time analysis. To address the first challenge, we begin by
formulating βi as the number of full message frames required
for transmitting authentication information appended to the
original data payload of Di bytes as a MAC of length Ai and
FV of length Fi in bytes, as shown in Fig. 5. Hence,

βi =

⌊
Di +Ai + Fi

Dmax

⌋
, (22)

where Dmax is the protocol’s maximum data payload size in
byte, which is 8 in CAN for both base and extended frame
formats. Note that βi may be zero in case the message and
authentication overhead is smaller than Dmax, and it may
be greater than one in case the message and authentication
overhead are greater than or equal to 2 ∗ Dmax. We also
formulate αi as the number (at most one) of partial message
frames:

αi =

⌈
Di +Ai + Fi

Dmax

⌉
− βi. (23)

This formulation allows for the possibility of specifying dif-
ferent maximum sizes for each message’s data payload and
authentication information.

When the original data payload and the authentication
overhead cause fragmentation to occur, i.e., βi + αi > 1,
the extra message instances (or fragments) can have differing
worst-case transmission times—but the same deadline—that
need to be reflected in the calculation of the busy interval and
response time. An important insight here is that the aggregate
sequence of fragments can be considered as one instance
taken together, because only the first fragment encounters

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 8

blocking. Thus, we find the worst-case transmission time for
the sequence of the βi + αi message fragments as

ĈDi
= βiCDmax

+ αiC(Di+Ai+Fi) mod Dmax
. (24)

Note that αi is redundant here as we calculate a non-zero
worst-case transmission time in the latter term only when Di+
Ai + Fi is not an exact multiple of Dmax. If Di + Ai + Fi

is a multiple of Dmax then the transmission times will be
accounted for by multiplication of the first term by βi.

Similarly, the blocking term induced by lower-priority mes-
sages may change due to the inclusion of authentication
information in the same frame as the original data payload,
hence

B̂i = max
k>i

(max(⌈βk/(βk + 1)⌉CDmax ,

C(Dk+Ak+Fk) mod Dmax
)).

(25)

Here the ceiling of division of βk by βk + 1 ensures that if
βk > 0 then one CDmax

is included as the blocking term
induced by Mk, while if βk = 0 then only the partial frame
for Mk is included.

The additional message frames then modify Qi from Eq. 3
to

Q̂i =

⌈
t̂i + Ji
Pi

⌉
(βi + αi). (26)

The multiplication by (βi + αi) accounts for the number of
frames transmitted for each periodic (or sporadic) instance of
Mi, while the term within the ceiling remains as in Eq. 3.

Due to the extra instances generated, the level-i busy
interval from Eq. 9 changes to t̂i, and it is found by solving
the recurrence relation

t̂n+1
i = B̂i + Ei(t̂ni) +

∑
k≤i

⌈
t̂ni + Jk

Pk

⌉
ĈDk

(27)

starting with t̂0i = ĈDi
and terminating at t̂n+1

i = t̂ni .
The second challenge requires modification of the WCRT

Ri(q) of message instance q (Eq. 2). Here we need to adjust
the waiting time wi(q) from the recurrence in Eq. 6 to include
the interference due to the extra message instances, so the new
recurrence becomes

ŵn+1
i (q) = B̂i + E(ŵn

i + ĈDi
)

+ (q mod (βi + αi))CDmax

+

⌊
q

βi + αi

⌋
ĈDi

+ Îi

(28)

where

Îi =
∑
k<i

⌈
ŵi + Jk + τbit

Pk

⌉
ĈDk

. (29)

The third term in Eq. 28 of (q mod (βi + αi)) captures
the number of full message frames previously transmitted as
fragments of the same message instance, then multiplied by
the maximum transmission time of CDmax

. This term accounts
for the delay on later fragments caused by earlier fragments
released for the same message instance. Similarly, the fourth
term of ⌊q/(βi + αi)⌋ represents the number of previously

transmitted (possibly fragmented) message instances for the
same message Mi within the i-level busy interval.

The recurrence is solved starting with ŵ0
i (q) = B̂i +

⌊ q
βi+αi

⌋ĈDi and terminating at ŵn+1
i (q) = ŵn

i (q). This
formulation avoids the pessimism that would result from
including B̂i in every fragment of the same instance because
only the first fragment can incur blocking.

The WCRT of the instance q is adjusted to change the sub-
traction of its offset within the busy interval to account for the
multiple simultaneous release of fragments in each period, and
to add either CDmax

or (C(Di+Ai+Fi) mod Dmax) depending
on whether q is for an earlier or final fragment of a message
instance, respectively, hence

R̂i(q) = Ji + ŵi(q)−

⌊
q

βi + αi

⌋
Pi

+

(
1−

⌊
(q mod (βi + αi)) + 1

βi + αi

⌋)
CDmax

+

⌊
(q mod (βi + αi)) + 1

βi + αi

⌋
Γi

(30)

where
Γi = αi(C(Di+Ai+Fi) mod Dmax

)

+ ((1− αi)(βi − 1)CDmax
).

(31)

Here we again have ⌊q/(βi + αi)⌋ in the third term as
the number of complete transmitted message instances prior
to q, which is multipled by Pi to determine the off-
set within the i-level busy interval of the current mes-
sage instance. The fourth and fifth terms both include
⌊((q mod (βi + αi)) + 1)/(βi + αi)⌋, which yields a value
of 1 for the final fragment in a message instance and 0 for
fragments of an incomplete message instance. In the fifth term
we introduce Γi for presentation only, with Eq. 31 yielding
either the transmission time of a partial message in case αi = 1
or yielding CDmax

in case αi = 0 and βi > 1. We generally
expect that 0 ≤ βi ≤ 2, but even for larger values of βi the
worst-case response time of the last fragment in a message
instance upper-bounds the other fragments, which is most
likely all that matters in practice since all fragments must
arrive at the destination within the deadline to be useful.

Finally we have

R̂i = max
q∈[0,Q̂i−1]

R̂i(q) (32)

as the response time with MAC overhead.

VII. PERIODIC MAC RESPONSE TIME ANALYSIS

The primary change needed in the CAN RTA to accommo-
date periodic MACs is to generate additional message frames
that will carry the MAC at a periodic rate ρi. We do not
constrain the size of the MAC but we would anticipate that the
MAC would fit in one full data frame. We assume the rate is
a multiple of the message’s period Pi, i.e., they are harmonic.
Also, when message frames are sporadic, the MAC is sent
every ρi/Pi transmissions of message Mi. Furthermore, we
assume that the periodic MAC is transmitted separately (albeit

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 9

with the same ID) from data payloads; this assumption could
be relaxed but the following formulation would become more
complicated.

Hence, we first modify Eq. 22 and Eq. 23 to determine the
number of full frames and (at most one) partial frames needed
for authentication as

β̃i =

⌊
Ai + Fi

Dmax

⌋
(33)

α̃i =

⌈
Ai + Fi

Dmax

⌉
− β̃i (34)

and the modification of Qi from Eq. 3 (Q̂i from Eq. 26
respectively) becomes

Q̃i =

⌈
t̃i + Ji
Pi

⌉
+

⌈
t̃i + Ji
ρi

⌉
(β̃i + α̃i). (35)

Here we include the cost of authentication in terms of the
number of frames transmitted each interval of ρi. Separation
of the authenticator from the data payload means that CDi

remains valid for data message transmissions while the worst-
case transmission time of the authenticator is

C̃Di = β̃iCDmax + α̃iC(Ai+Fi) mod Dmax
. (36)

and the blocking time is

B̃i = max
k>i

(max(CDk
,⌈βk/(βk + 1)⌉CDmax

,

C(Ak+Fk) mod Dmax
)).

(37)

The level-i busy interval is now t̃i found by solving the
recurrence relation

t̃n+1
i = B̃i + Ei(t̃ni)

+
∑
k≤i

(⌈
t̃ni + Jk

Pk

⌉
CDk

+

⌈
t̃ni + Jk

ρk

⌉
C̃Dk

)
(38)

starting with t̃0i = CDi
+ C̃Di

and terminating at t̃n+1
i = t̃ni .

We again need to adjust the waiting time ŵi(q) from the
recurrence in Eq. 28 to include the interference due to the
periodic generation of extra instances, hence

w̃n+1
i (q) = B̃i + E(w̃n

i + CDi
)

+

⌊
q

ρi/Pi + (β̃i + α̃i)

⌋(
ρi
Pi

CDi
+ C̃Di

)
+min(q′,

ρi
Pi

)CDi
+max(0, q′ − ρi

Pi
)CDmax

+ Ĩi

(39)

where

q′ = q mod (ρi/Pi + (β̃i + α̃i)) (40)

and

Ĩi =
∑
k<i

(⌈
w̃i + Jk + τbit

Pk

⌉
CDk

+

⌈
w̃i + Jk + τbit

ρk

⌉
C̃Dk

)
.

(41)

Ĩi is the interference caused by the regular message instance
transmissions each Pk plus the interference caused by the
periodic authentication each ρk. Here we calculate on one hand
⌊q/(ρi/Pi + (β̃i + α̃i))⌋ the count of periodic authentications
in the interval leading up to but not including the same batch
of periodically authenticated message instances as q. Note
that ρi/Pi yields the number of message instances transmitted
between authentications, and therefore ρi/Pi + (β̃i + α̃i) is
a count of instances transmitted when including the authen-
tication message instance(s). We then multiply this count by
the time needed to transmit all the messages in the batch.
This corresponds to the third item in Eq. 39. On the other
hand, q′ = q mod (ρi/Pi + (β̃i + α̃i)) counts the number
of messages (including the regular message instances and the
authentication message instance(s) transmitted before instance
q within the last batch. If q′ < ρi/Pi, instance q corresponds
to a regular message instance, otherwise it corresponds to the
authentication message instance if q′ ≥ ρi/Pi. The fourth
and fifth terms in Eq. 39 calculate the delay introduced due
to messages transmitted before instance q within the same
batch, which include regular message instances and optionally
authentication message instance(s) depending on instance q.

The recurrence is solved starting with w̃0
i (q) = B̃i + qCDi

and terminating at w̃n+1
i (q) = w̃n

i (q).
We also need to adjust the WCRT of an instance q in the

busy period by subtracting its offset based on the periodic rate
of MACs, hence

R̃i(q) = Ji+w̃i(q)−

⌊
q

ρi/Pi + β̃i + α̃i

⌋
ρi+max (CDi

, C̃Di
).

(42)
Here, the floor function in ⌊q/(ρi/Pi + (β̃i + α̃i)⌋ gives us a
lower bound of the periodic authentications before the batch
containing q. We subtract another ρi as the offset each time
that q exceeds a multiple of this count. Unlike the case of
authenticating every instance, in the periodic case we do not
know which values of q represent MACs, so we have to be a bit
pessimistic in terms of potentially undercounting the number
of periodic authentications prior to q as well as adding the
worst-case transmission time of the larger of the data and its
authenticator.

Finally, we have

R̃i = max
q∈[0,Q̃i−1]

R̃i(q) (43)

as the response time with periodic MACs.

VIII. EVALUATION

A. Classical CAN

To analyze the formulation and performance of RTA for
CAN, we evaluate the real-time performance impact of adding
message authentication using synthetic workloads generated
randomly and two uses cases: a realistic instrument cluster
message set from the BMW E90 described by Buttigieg et
al. [29] and an SAE benchmark described by Tindell and
Burns [30]. Python implementations for all our experiments

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 10

are available as open-source1. The two use cases demonstrate
the impact of MACs and periodic MACs on the response time
of realistic CAN message sets. The synthetic workloads are
used to conduct a randomized schedulability experiment with
parameters that are representative of a wide variety of possible
CAN message sets.

1) Use Case: BMW Message Set: We used the BMW CAN
message set that depicts message signals sent in the instrument
cluster of the BMW E90 car with a bus speed of 100 kb/s [29].
Table VI highlights the message IDs, DLC, periods, and their
respective transmission times used for the experiment. We
applied the RTA formulations for the message set as-is, and
the addition of MACs and periodic MACs using SecOC Profile
1. The results obtained for the WCRT of the message IDs are
also given in Table VI.

The response time of messages increased substantially when
the MAC and the periodic MAC are added. However, increas-
ing ρi greatly improves WCRTs. We also show the WCRT
of the periodic MAC approach when ρi = Pi, i.e., when
every message instance has a MAC applied. Functionally this
approach is similar to the MAC approach with the exception
that authenticators are not packed into the same frame as
the original message payload data. Therefore, this periodic
approach should always have WCRT greater than or equal to
the MAC approach, which is shown in the results and lends
confidence that our RTA formulations for the two approaches
are consistent. The MAC approach is schedulable, although
we calculated R̂0CE = 9.4 so there is not much slack.
The periodic MAC approach using ρi = 2Pi is schedulable
and has response times lower than the MAC approach, thus
demonstrating the value of both our RTA formulation as well
as periodic MACs for classical CAN.

2) Use Case: SAE Benchmark: Table VII shows the pa-
rameters of the SAE benchmark, which is a modified version
of the original SAE benchmark [30], along with the response
time of messages with the MAC and periodic MAC. As can be
seen at bus speed 125 kb/s, adding MACs and periodic MACs
makes some of the messages in the system not schedulable.
We found that the bus utilization exceeds 100% with the
addition of MACs for this benchmark. Also, the MAC and the
periodic MAC approach with both ρi = Pi and ρi = 2Pi fail
to converge while attempting to solve the recurrence relation
and therefore do not find a response time for several of the
messages. The RTA for the periodic MAC approach with
ρi = 10Pi converges but it still is not schedulable assuming
implicit deadlines, which demonstrates the value of having
the RTA formulation. We also considered an extreme case of
the periodic MAC approach with ρi = 1000Pi; in this case,
there are substantially diminishing returns from increasing the
period of the MAC and the performance tracks quite closely
with the case of ρi = 10Pi.

3) CAN Schedulability: For synthetic randomized schedu-
lability experiments, we start the evaluation by creating 1000
message sets varying each message’s period (implicit dead-
line) and the DLC. We assigned DLC (i.e., 1-8 bytes) and
periods to each message uniformly at random from a period

1https://github.com/Embedded-Systems-Security-Lab/canasta.

(a) Schedulability

(b) Percent of messages meeting deadlines (Ri < Pi)

Fig. 6: Random message sets in Classical CAN with varying
bus utilization and authentication schemes at 250 kbps bitrate

set containing 5, 10, 100, 1000, and 5000 ms, and varied
the bus utilization from 10 to 90 percent. We generate the
messages uniformly at random from the fixed period sets and
the DLC range until reaching the utilization. Message IDs
(priorities) are assigned rate monotonically. We calculate the
CAN RTA for each generated message set as a baseline. We
then calculate the MAC and periodic MAC approaches with
the same message set. For the MAC approach, we add an
authenticator using SecOC Profile 1 (24Bit-CMAC-8Bit-FV).
If the resulting payload exceeds the 8 byte Dmax of CAN then
we generate an additional frame, i.e., βi + αi = 2. For the
periodic MAC approach we consider the addition of SecOC
Profile 1 authenticators on every message at a periodic rate
of ρi = 2Pi and ρi = 10Pi. We also consider the case of
ρi = Pi, which generates a separate authenticator frame for
every message instance.

Fig. 6a shows the percentage of schedulable message sets
for the different authentication schemes at 250 kbps CAN
bitrate. Each datapoint shows the percent schedulable out
of 1000 generated message sets for the given authentication
approach at that bus utilization. As expected, the MAC and
Periodic MAC with ρi = Pi perform the worst; they both
have a sharp drop-off around 30–40% bus utilization, which
makes sense because they increase the number of message
transmissions by 50–100%. At around 50% utilization the
recurrence relation in the RTA for those approaches fails
to converge. Somewhat surprisingly however the periodic
approach with ρi = 2Pi also tracks the same trend line, and
even with ρi = 10Pi the schedulability of the message sets
drops at 40–50% utilization. We observe the same trend for the
periodic MAC regardless of ρi because the ceiling function in

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 11

TABLE VI: BMW message set parameters, 100 kbps bitrate [29], with calculated worst-case response times for No MAC,
MAC (Profile 1), and periodic MAC (ρi ∈ 1 ∗ Pi, 2 ∗ Pi, 10 ∗ Pi).

ID (hex) Di Pi (ms) Description CDi
(ms) No MAC MAC ρi = Pi ρi = 2 ∗ Pi ρi = 10 ∗ Pi

0x0A8 8 10 Torque, Clutch and Brake
Status 1.35 2.7 3.65 4.05 4.05 4.05

0x0AA 8 10 Engine RPM and Throttle
Position 1.35 4.05 5.95 6.35 6.35 6.35

0x0C0 2 200 ABS / Brake Counter 0.75 4.8 7.1 7.65 7.65 7.65
0x0CE 8 10 Individual Wheel Speeds 1.35 6.15 9.4 10.35 10.35 10.35

0x0D7 2 200 Counter (Airbag /
Seatbelt related) 0.75 6.9 10.55 18.55 15.7 15.7

0x130 5 100 Ignition and Key Status
(Terminal 15) 1.05 7.95 19.45 20.65 17.8 17.8

0x19E 8 200 ABS / Braking Force 1.35 9.3 28.65 30.15 20.4 20.4
0x1A6 8 100 Speed 1.35 10.65 37.85 39.35 29.6 26.75

0x1D0 8 200
Engine Temperature,
Pressure Sensor and

Handbrake
1.35 16.05 47.05 48.55 35.95 29.05

0x21A 3 5000 Lighting Status 0.85 16.9 48.3 49.95 37.35 30.45
0x26E 8 200 Ignition Status 1.35 18.25 57.5 59.55 40.05 37.2
0x335 8 1000 Unknown 1.35 19.6 59.8 68.75 49.25 39.5
0x349 5 200 Fuel Level Sensors 1.05 20.65 68.7 70.45 50.95 45.25
0x34F 2 1000 Handbrake Status 0.75 25.45 69.85 78.95 56.6 46.85
0x380 7 Once VIN Number 1.25 26.7 78.95 88.35 56.6 49.35
0x39E 8 Once Set Time and Date 1.35 28.05 88.15 90.75 68.4 55.8

0x3B4 8 4000 Battery Voltage and
Charge Status 1.35 29.4 97.35 99.95 70.7 58.1

0x581 8 5000 Seat belt Status 1.35 29.4 98.3 100.9 75.7 59.05

TABLE VII: Modified SAE Benchmark [3] with calculated worst-case response times for No MAC, MAC (Profile 1), and
periodic MAC (ρi ∈ 1 ∗ Pi, 2 ∗ Pi, 10 ∗ Pi).

Sender ID (hex) Di Pi (ms) CDi
(ms) No MAC MAC ρi = Pi ρi = 2 ∗ Pi ρi = 10 ∗ Pi

VC
A0 1 5 0.52 1.44 2.04 2.2 2.2 2.2
B0 6 10 0.92 4.44 ∞ ∞ ∞ 15.6
D0 1 1000 0.52 19.32 ∞ ∞ ∞ 89.44

Brakes A1 2 5 0.6 2.04 4.12 3.56 3.56 3.56
C1 1 100 0.52 9.44 ∞ ∞ ∞ 49.68

Battery
B2 1 10 0.52 4.96 ∞ ∞ ∞ 20.52
C2 4 100 0.76 10.12 ∞ ∞ ∞ 79.48
D2 3 1000 0.68 19.84 ∞ ∞ ∞ 99.8

Driver A3 1 5 0.52 2.56 12.12 4.84 4.84 4.84
B3 2 10 0.6 5.56 ∞ ∞ ∞ 29.52

IMC A4 2 5 0.6 3.16 ∞ ∞ 8.44 8.44
B4 2 10 0.6 8.92 ∞ ∞ ∞ 45.64

Trans
A5 1 5 0.52 3.68 ∞ ∞ 14.56 13.0
C5 1 100 0.52 18.8 ∞ ∞ ∞ 88.92
D5 1 1000 0.52 19.84 ∞ ∞ ∞ 100.32

Eq. 35, 38, and 41 can lead to the same output due to rounding
up the division to the same value. Hence, the same number of
instances or worst-case delay of a message can be observed
across different settings of ρi.

To better understand the message set schedulability results,
we also investigated the ratio of schedulable messages within
the generated sets. As demonstrated in the SAE benchmark
case study, often the messages with the shortest and longest pe-
riods can meet their deadlines despite authentication overhead,
while those in the middle tend to fail first. Fig. 6b shows the
percent of individual messages that meet their deadlines for the
same generated message sets as the schedulability results from
Fig. 6a. This plot shows more gradual performance degrada-
tion because many messages can still meet their deadlines. The
periodic MAC approaches that skip more messages between
authentications performs well until after 70% utilization, with
ρi = 2Pi failing to converge at 80% and ρi = 10Pi at
90% utilization. These results indicate that a more intelligent
approach to allocating MACs to messages could yield better

real-time schedulability performance.

B. CAN FD Schedulability

We examine the performance impact of adding MACs to
CAN FD using synthetic message sets to evaluate the RTA
formulation. Similarly to CAN, we created 1000 message sets
for CAN FD using DLC values ranging from 1 to 64 bytes
and assigned periods from 5, 10, 100, 1000, and 5000 ms. We
used a bus speed of 250kbps and 4Mbps for bitrate switching
and calculated τbit and τdbit using Eq. (17) to generate their
transmission times.

Fig. 7 shows the percentage of message sets that are schedu-
lable, and we observe a drop-off in schedulability around 65%
bus utilization for periodic MAC and ρi = Pi. The MAC and
ρi = 2Pi fail to converge at 90% bus utilization. We observe
that the addition of MAC shows a moderate increase in the
transmission times, with the 64-byte payload size incurring the
most overhead since an extra frame is required to transmit the

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 12

Fig. 7: Schedulability of random message sets for CAN FD
with varying bus utilization and authentication schemes at
τbit = 0.002, τdbit = 0.00025.

Fig. 8: Schedulability of random message sets for CAN XL
with varying bus utilization and authentication schemes at
τbit = 0.002, τdbit = 0.0001.

authenticator due to an already full data payload. Because the
periodic MAC introduces an extra frame, the periodic MAC
is not in general a good choice, however it does perform the
best with sufficiently high enough period (e.g., ρi = 10 ∗ Pi)
at high bus utilization.

C. CAN XL Schedulability

For CAN XL, we generated 1000 message sets with DLC
between 1 and 2048 and with the period set used for CAN
and CAN FD. We use a bus speed of 500kbps and 10Mbps
for bitrate switching. Fig. 8 shows the schedulability of ran-
domized message sets, which demonstrates that adding MACs
tracks closely with not using MACs until roughly 90% bus
utilization. On one hand, the addition of MACs adds little
overhead as they fit within the frame and the faster bitrate
accommodates them. On the other hand, adding MACs at high
bus utilization can cause total bus utilization to exceed 100%
and therefore lose schedulability. For CAN XL, neglecting the
computational overheads for MAC validation as we have done
throughout, it seems that there is no advantage or disadvantage
with respect to schedulability to use periodic MACs (with
ρi ≥ 2 ∗ Pi) versus appending a MAC to every message.

IX. CONCLUSION

In this paper we provide the first comprehensive approach
toward formalizing the impact that authentication schemes
have on the real-time performance of messages over CAN,
CAN FD, and CAN XL based on response time analysis. We
show the utility of our approach by evaluating the effectiveness
with respect to schedulability of periodic message authen-
tication compared to authenticating every message instance

across randomized message sets and for two CAN use cases.
In this work, we have ignored the issues of key exchange and
re-synchronization that are required by some authentication
schemes [31]. Future work can tighten the bounds of our
RTA in places where we have been overly pessimistic, and
the RTA formulations can be extended to support evaluation
of other proposed schemes for CAN authentication such as
when transmitting the authenticator with separate IDs or using
re-synchronization.

ACKNOWLEDGMENTS

This work is partially supported by NSF CNS-2046705,
NSF OAC-2001789, and Colorado Bill SB18-086.

REFERENCES

[1] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller Area
Network (CAN) schedulability analysis: Refuted, revisited and revised,”
Real-Time Systems, vol. 35, no. 3, pp. 239–272, 2007.

[2] K. Tindell, A. Burns, and A. J. Wellings, “Calculating controller area
network (can) message response times,” Control engineering practice,
vol. 3, no. 8, pp. 1163–1169, 1995.

[3] K. Tindell, H. Hanssmon, and A. J. Wellings, “Analysing real-time
communications: Controller area network (CAN).” in RTSS, 1994.

[4] C. AUTOSAR, “Specification of secure onboard communication,” AU-
TOSAR CP Release, vol. 4, no. 1, 2017.

[5] G. Bloom, “WeepingCAN: A Stealthy CAN Bus-off Attack,” in Work-
shop on Automotive and Autonomous Vehicle Security. Internet Society,
Feb. 2021.

[6] B. Groza and P.-S. Murvay, “Security solutions for the controller
area network: Bringing authentication to in-vehicle networks,” IEEE
Vehicular Technology Magazine, vol. 13, no. 1, pp. 40–47, 2018.

[7] B. Groza, S. Murvay, A. v. Herrewege, and I. Verbauwhede, “Libra-
can: A lightweight broadcast authentication protocol for controller area
networks,” in International Conference on Cryptology and Network
Security. Springer, 2012, pp. 185–200.

[8] R. Kurachi, Y. Matsubara, H. Takada, N. Adachi, Y. Miyashita, and
S. Horihata, “Cacan-centralized authentication system in can (controller
area network),” in 14th Int. Conf. on Embedded Security in Cars (ESCAR
2014), 2014.

[9] M. Zhang, P. Parsch, H. Hoffmann, and A. Masrur, “Analyzing can’s
timing under periodically authenticated encryption,” in 2022 Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2022,
pp. 620–623.

[10] J. Daily, D. Nnaji, and B. Ettlinger, “Securing CAN Traffic on J1939
Networks,” in Workshop on Automotive and Autonomous Vehicle Secu-
rity. Internet Society, Feb. 2021.

[11] C.-W. Lin, Q. Zhu, C. Phung, and A. Sangiovanni-Vincentelli, “Security-
aware mapping for can-based real-time distributed automotive systems,”
in 2013 IEEE/ACM International Conference on Computer-Aided De-
sign (ICCAD). IEEE, 2013, pp. 115–121.

[12] B. Groza, L. Popa, and P.-S. Murvay, “Highly efficient authentication for
can by identifier reallocation with ordered cmacs,” IEEE Transactions
on Vehicular Technology, vol. 69, no. 6, pp. 6129–6140, 2020.

[13] S. Nürnberger and C. Rossow, “–vatican–vetted, authenticated can bus,”
in International Conference on Cryptographic Hardware and Embedded
Systems. Springer, 2016, pp. 106–124.

[14] J. Van Bulck, J. T. Mühlberg, and F. Piessens, “Vulcan: Efficient
component authentication and software isolation for automotive con-
trol networks,” in Proceedings of the 33rd Annual Computer Security
Applications Conference, 2017, pp. 225–237.

[15] G. Xie, L. T. Yang, W. Wu, K. Zeng, X. Xiao, and R. Li, “Security
enhancement for real-time parallel in-vehicle applications by CAN fd
message authentication,” IEEE Transactions on Intelligent Transporta-
tion Systems, 2020.

[16] J. Petit and Z. Mammeri, “Impact of message authentication on braking
distance in vehicular networks,” in Proc. of 5th ERST2 Workshop, 2010.

[17] Z. Wu, J. Zhao, Y. Zhu, and Q. Li, “Research on vehicle cybersecu-
rity based on dedicated security hardware and ecdh algorithm,” SAE
Technical Paper, Tech. Rep., 2017.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 13

[18] Y. Xie, Y. Guo, S. Yang, J. Zhou, and X. Chen, “Security-related
hardware cost optimization for CAN fd-based automotive cyber-physical
systems,” Sensors, vol. 21, no. 20, p. 6807, 2021.

[19] V. Lesi, I. Jovanov, and M. Pajic, “Security-aware scheduling of embed-
ded control tasks,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 16, no. 5s, pp. 1–21, 2017.

[20] S. K. Ghosh, J. S. RC, V. Jain, and S. Dey, “Reliable and secure design-
space-exploration for cyber-physical systems,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 19, no. 3, pp. 1–29, 2020.

[21] U. D. Bordoloi and S. Samii, “The frame packing problem for can-fd,” in
2014 IEEE Real-Time Systems Symposium. IEEE, 2014, pp. 284–293.

[22] R. De Andrade, K. N. Hodel, J. F. Justo, A. M. Laganá, M. M. Santos,
and Z. Gu, “Analytical and experimental performance evaluations of
can-fd bus,” IEEE Access, vol. 6, pp. 21 287–21 295, 2018.

[23] T. Nolte, H. Hansson, and C. Norström, “Minimizing CAN response-
time jitter by message manipulation,” in Proc. IEEE Real-Time and
Embedded Technology and Applications Symposium, 2002, pp. 197–206.

[24] G. Cena, I. Cibrario Bertolotti, T. Hu, and A. Valenzano, “Performance
comparison of mechanisms to reduce bit stuffing jitters in Controller
Area Networks,” in Proc. 17th IEEE Conference on Emerging Tech-
nologies and Factory Automation (ETFA), Sep. 2012, pp. 1–8.

[25] I. Broster, A. Burns, and G. Rodriguez-Navas, “Timing analysis of
real-time communication under electromagnetic interference,” Real-Time
Systems, vol. 30, no. 1-2, pp. 55–81, 2005.

[26] ISO, ISO 11898-1 – Road vehicles – Controller area network (CAN) –
Part 1: Data link layer and physical signalling, 2nd ed., International
Organization for Standardization, Dec. 2015.

[27] CiA, Draft specification CiA 610-1 version 1.0.0 – CAN XL specifi-
cations and test plans – Part 1: Data link layer and physical coding
sub-layer requirements, CAN in Automation (CiA) e. V., Mar. 2022.

[28] M. Dworkin, “Recommendation for Block Cipher Modes of
Operation: the CMAC Mode for Authentication,” National
Institute of Standards and Technology, Tech. Rep. NIST
Special Publication (SP) 800-38B, Oct. 2016. [Online]. Available:
https://csrc.nist.gov/publications/detail/sp/800-38b/final

[29] R. Buttigieg, M. Farrugia, and C. Meli, “Security issues in controller
area networks in automobiles,” in 2017 18th International Conference
on Sciences and Techniques of Automatic Control and Computer Engi-
neering (STA). IEEE, 2017, pp. 93–98.

[30] K. Tindell and A. Burns, “Guaranteeing message latencies on control
area network (can),” in Proceedings of the 1st International CAN
Conference, 1994.

[31] A.-I. Radu and F. D. Garcia, “Leia: A lightweight authentication protocol
for can,” in European Symposium on Research in Computer Security.
Springer, 2016, pp. 283–300.

Omolade Ikumapayi is a Ph.D. student in the
Computer Science Department at University of Col-
orado Colorado Springs. Her research focuses on the
security of real-time systems.

Habeeb Olufowobi (M’20) received his Ph.D. in
computer science from Howard University in 2019.
He joined University of Texas at Arlington as Assis-
tant Professor of Computer Science and Engineering
in 2020. His research focuses on embedded systems
security and privacy challenges in emerging network
technologies for connected autonomous vehicles, the
Internet of Vehicles (IoV) in a smart city ecosystem,
and vehicular cloud network.

Jeremy Daily is an Associate Professor of Systems
Engineering at Colorado State University in Fort
Collins, CO. He helps run the CyberTruck Chal-
lenge, CyberAuto Challenge, CyberBoat Challenge.
He also provides instruction for the CyberTrac-
tor Challenge. Before coming to CSU, he was an
Associate Professor of Mechanical Engineering at
the University of Tulsa. Dr. Daily’s research inter-
ests include heavy vehicle cybersecurity and digital
forensics for transportation systems.

Tingting Hu received her Master degree in Com-
puter Engineering in 2010 and PhD degree in Com-
puter and Control Engineering in 2015 from Po-
litecnico di Torino, Turin, Italy. Between 2010 and
2016, she also worked as a research fellow with the
National Research Council of Italy (CNR), Turin,
Italy. She joined University of Luxembourg as a
post-doc researcher in 2016 and research scientist
in 2019 with the Faculty of Science, Technology
and Medicine (FSTM). Her research interest mainly
concerns real-time embedded systems with a focus

on real-time networks and E/E architecture design for Software Defined
Vehicles (SDV). She serves as program committee member and technical
referee for several primary international conferences and journals.

Ivan Cibrario Bertolotti (M’06) received the Lau-
rea degree (summa cum laude) in computer science
from the University of Torino, Turin, Italy, in 1996.
Since then, he has been a Researcher with the
National Research Council of Italy (CNR), Rome,
Italy. Currently, he is with the Institute of Electron-
ics, Computer and Telecommunication Engineering
(IEIIT), Turin. He has written text books on real-
time embedded systems and taught several courses
on real-time operating systems at Politecnico di
Torino, Turin, and he serves as a Technical Referee

for primary international journals and conferences. His research interests
include real-time operating system design and implementation, industrial
communication systems and protocols, as well as modeling languages and
runtime support for cyber-physical systems.

Gedare Bloom (SM’19) received his Ph.D. in com-
puter science from The George Washington Uni-
versity in 2013. He joined the University of Col-
orado Colorado Springs as Assistant Professor of
Computer Science in 2019 and Associate Professor
in 2022. He was Assistant Professor of Computer
Science at Howard University from 2015-2019. His
research expertise is computer system security with
emphasis on real-time embedded systems. He is an
associate editor for the IEEE TRANSACTIONS ON
VEHICULAR TECHNOLOGY.

