
Deep Reinforcement Learning for Energy-Efficient
Task Offloading in Cooperative Vehicular Edge

Networks
Paul Agbaje

dept. Computer Science and Engineering
University of Texas at Arlington
pauloluwatowoju.agbaje@uta.edu

Ebelechukwu Nwafor
dept. Computing Sciences

Villanova University
ebelechukwu.nwafor@villanova.edu

Habeeb Olufowobi
dept. Computer Science and Engineering

University of Texas at Arlington
habeeb.olufowobi@uta.edu

Abstract—In the Internet of Vehicle ecosystem, multi-access
edge computing (MEC) enables mobile nodes to improve their
communication and computation capabilities by executing trans-
actions in near real-time. However, the limited energy and
computation capabilities of MEC servers limit the efficiency
of task computation. Moreover, the use of static edge servers
in dense vehicular networks may lead to an influx of service
requests that negatively impact the quality of service (QoS) of
the edge network. To enhance the QoS and optimize network
resources, minimizing offloading computation costs in terms of
reduced latency and energy consumption is crucial. In this paper,
we propose a cooperative offloading scheme for vehicular nodes,
using vehicles as mobile edge servers, which minimizes energy
consumption and network delay. In addition, an optimization
problem is presented, which is formulated as a Markov Decision
Process (MDP). The solution proposed is a deep reinforcement-
based Twin Delayed Deep Deterministic policy gradient (TD3),
ensuring an optimal balance between task computation time
delay and the energy consumption of the system.

Index Terms—Smart cities, vehicular edge computing, Internet
of vehicles, deep reinforcement learning, task offloading, TD3

I. INTRODUCTION

With the increasing reliance on embedded sensors integrated
into vehicles and their connectivity to the Internet, the Internet
of Vehicles (IoV) has emerged as a network that incorporates
the Internet of Things (IoT), communication networks, and
the cloud to support vehicular operations. These sensors are
an integral aspect of modern automobile architecture, allowing
for increased safety, comfort, and automation [1]. In connected
autonomous vehicles, big data shared by these sensors have
become the ultimate enabler of understanding the virtuous
cycle of safety and autonomy and is essential in strengthening
the resilience of vehicles in the future connected smart cities.

Currently, cloud computing platforms provide the necessary
resources and infrastructures for the efficient operation of
IoV and are essential in transforming cars from stand-alone,
transportation-centric machines to sophisticated computers on
wheels. However, this approach is becoming increasingly in-
efficient, particularly regarding real-time communication, data
processing, and service execution. This inefficiency is due to
the voluminous data produced by these embedded sensors,
high latency, bandwidth limitations, and potential connectivity

failures between the cloud and vehicles. In addition, limited
spectrum resources from traditional wireless networks and
low computational capabilities of in-vehicle resources pose
challenges for real-time and computationally intensive tasks.

To address these challenges, multi-access edge computing
(MEC) has been implemented, allowing computation and
service delivery to be moved from the cloud to edge nodes.
MEC can be deployed at roadside units (RSUs) or base
stations (BSs) to minimize network congestion and enhance
performance. By offloading delay-sensitive and computation-
ally intensive tasks to the edge network, MEC enables vehicles
to improve their communication and computation capabilities
and minimize energy consumption [2].

MEC servers provide support for vehicular networks but
are limited by cost, scalability, latency, and security issues in
meeting the quality of service (QoS) requirements for vehicu-
lar applications. Effective task offloading requires vehicles to
determine when and what tasks to offload to MEC servers.
Energy efficiency and security are crucial in this scenario,
where limited network resources must handle numerous task-
offloading requests. The increasing number of vehicles and
the dynamic nature of the network make it challenging to
maintain network efficiency, especially with limited RSUs or
BSs. Moreover, a large number of task offloading requests
can overload MEC servers, impact QoS, and cause denial of
service attacks.

To address these challenges, we propose using vehicles
as mobile servers where the vehicles function as mobile
nodes providing computing and network services to other
vehicles and RSUs. By using the vehicle’s resources, MEC
servers services can be enhanced, reducing the loads on
the servers and improving the overall QoS. As vehicles are
also resource-constrained, we leveraged techniques prioritizing
tasks based on available computational resources and offload-
ing non-safety-critical but latency-sensitive tasks. This task
includes workloads for traffic management, road safety, and
navigation in intelligent transportation systems, multimedia
processing and streaming for in-vehicle entertainment, and
message forwarding between two endpoints. Since the com-
plexity of the problem increases with the mobile environments

and actions, we leveraged DRL to develop a Twin Delayed
Deep Deterministic policy gradient (TD3)-based algorithm to
address the offloading constraints. Simulation results shows
the effectiveness of our approach and highlight its potential in
supporting MEC for reduced latency and energy efficiency in
cooperative vehicular edge networks.

In summary, the contributions of this paper are as follows:
• We propose a vehicular edge computing framework that

includes vehicles as edge servers, providing additional
computational resources apart from the conventional
static edge servers.

• We formulate an optimization problem to minimize the
energy consumption rate and total network delay to
enhance the QoS in resource-constrained vehicular nodes.

• We reformulate the optimization problem as a Markov
decision process (MDP). Due to the complexity of the
formulated problem with respect to the complex state,
action, and environment, a TD3-based solution is lever-
aged to develop an algorithm for solving the optimization
problem.

• To demonstrate the effectiveness of our approach, we
evaluate the performance in a simulated vehicular envi-
ronment. The result shows the efficiency for task offload-
ing with minimal latency and energy consumption.

II. RELATED WORK

Artificial intelligence (AI) approaches such as reinforce-
ment learning (RL) offer long-term advantages for decision-
making in dynamic environments [3]. This has led to the
development of RL algorithms for solving offloading problems
in vehicular edge networks, such as Q-learning [4], deep
Q-learning [5], and deep deterministic policy gradient-based
algorithms (DDPG) [6]. Tan and Hu [4] used Q-learning and
a multi-time scale framework to address computing resource
allocation and caching placement issues in vehicular edge
networks with strict service deadlines. Liu et al. [5] applied a
DRL-based Q-learning approach to maximize the total utility
of a vehicle edge computing network. Hazarika et al. [7] pro-
posed a soft actor-critic (SAC) method for resource allocation
during task offloading in IoV, considering task priority and
utility functionsto maximize the mean system utility. Peng and
Shen [6] developed a hierarchical DDPG algorithm to optimize
multi-dimensional resources to satisfy the QoS requirements
and maximizing offloaded tasks in vehicular edge networks.
However, DDPG policies can sometimes be inaccurate due to
incorrect sharp peaks in the Q-function approximator [8].

Despite advancements in DRL algorithms, the influx of
requests in the vehicular edge environment can cause pro-
cessing delay and energy consumption in the network. An
efficient approach is required to make offloading decisions and
allocate resources while maintaining QoS. To address these
challenges, we propose a method that considers the duration
of task offloading, computation, and energy consumption.
In our proposed model, vehicles can support edge servers
by providing computational services. Our offloading scheme
optimizes energy efficiency while ensuring QoS for users.

MeNB
SeNB

SES

MES

SES

SeNB
SES

SeNB

Fig. 1: Overview of the vehicular edge environment

Furthermore, the proposed TD3-based algorithm addresses the
limitations of DDPG-based algorithms with approaches such
as dual Q-function learning, delayed policy updates, and policy
smoothing [8].

III. SYSTEM MODEL

In this section, we present the system model of the vehicular
MEC network. We first describe the network model, then
describe the details of the communication, computation, and
energy models.

A. Vehicular MEC Network Architecture

Fig. 1 illustrates the network architecture of the vehicular
MEC network. We consider a vehicular MEC environment
with a macrocell (MeNB) denoted by M and a set of N
small cells (SeNBs) denoted by N = {1, 2, 3, ..., N}, con-
nected to the MeNB through wired links [9]. The MeNB is
connected through the core network to the cloud via cellular
communication links and has a MEC server associated with
it. Also, a static MEC server (SES) is associated with each
SeNB. If the set of vehicles in the network is denoted by V =
{1, 2, 3, ..., V }, we assume that |V| ⩾ |N | ⩾ |M|, represents
a dense urban settlement with high traffic. Since the number
of vehicles is more than the number of available SeNBs, the
SeNBs can get overloaded with service requests. Vehicles can
access the MEC servers through wireless access technologies,
and the vehicles acting as mobile edge servers (MES) can
provide computational resources to meet the requirements of
the network. Furthermore, vehicles in the network can locally
execute tasks, offload tasks to nearby MESs, or offload to SESs
through the SeNB or MeNBs associated with it. We assume
that the MEC servers make decisions about the computation
offloading policies of the environment.

B. Communication Model

Let dv ∈ {0, 1},∀v be the local task offloading decision
of a vehicle v. If a vehicle decides to locally compute its
task, dv = 1, else, if the vehicle decides to offload it to a
MES or SES, dv = 0. Also, we denote sv ∈ {0, 1}∀v and
mv ∈ {0, 1}∀v as the task offloading decisions to a SES and
MES respectively. If a vehicle v decides to offload its task to
a SES, then sv = 1, else sv = 0. If the vehicle offloads the
task to a MES mv = 1, otherwise mv = 0. Therefore, the

offloading decision profile of the vehicles can be denoted by
d = {dv}v∈V , s = {sv}v∈V , and m = {mv}v∈V .

For vehicle to MES communication, if vehicles served
by a MES occupy the same frequency spectrum, there will
be interference caused by different vehicles. According to
the Shannon limit, the spectrum efficiency achieved for the
communication link between an MES m and vehicle v is [10]:

eMES
v,m = log2(1 + Ωv,m) (1)

where Ωv,m is the signal-to-interference and noise ratio
(SINR) in the communication channel between vehicle, v and
MES, m, and is given by:

Ωv,m =

[
pvhv,m∑J

j=1

∑M
k=1,k ̸=m pjhj,m +N0

]
,∀v,m (2)

where pv and pj are the transmission power of the offloading
vehicles v and j respectively, hv,m, hj,m are the channel gain
between vehicle v and MES m, and the channel gain between
vehicle j and MES m respectively. J is the total number
of interfering vehicles, M is the total number of interfering
MESs, N0 is the power spectrum density of additive white
Gaussian noise, and the expression

∑J
j=1

∑M
k=1,k ̸=m pjhj,m

represents the interference from other vehicles.
If fv,m is the fraction of spectrum allocated to vehicle v

by the m-th MES and B0 is the available spectrum. Then, the
transmission rate of vehicle v is expressed as:

RMES
v,m = dvmvfv,mB0e

MES
v,m (3)

In the network, we assume that each offloading vehicle is
orthogonally assigned a spectrum from the SeNBs, and there is
no interference from vehicles within a single SeNB. However,
there is interference from a neighboring SeNB. Therefore, the
spectrum efficiency is given by:

eSES
v,s = log2(1 + Ωv,s) (4)

where Ωv,s is the SINR in the communication channel between
the vehicle, V , and SES, s, and is given by:

Ωv,s =

[
pvhv,s∑J

j=1

∑S
k=1,k ̸=s pjhj,s +N0

]
,∀v, s (5)

where pv and pj denote the transmission power of the offload-
ing vehicles v and j respectively, hv,s, hj,s are the channel
gain between vehicle, v and SES, s, and the channel gain
between vehicle j and SES s respectively. J is the total number
of interfering vehicles, S is the total number of interfering
SESs, N0 is the power spectrum density of additive white
Gaussian noise, and the expression

∑J
j=1

∑S
k=1,k ̸=s pjhj,s is

the interference from vehicles from a neighboring SeNB.
Let fv,s be the fraction of spectrum allocated to vehicle

v by the s-th SES and B1 be the available spectrum. The
transmission rate of vehicle v can be calculated as:

RSES
v,S = dvsvfv,sB1e

SES
v,s (6)

C. Computation Model

The computation tasks, Av of each vehicle is denoted as
Av := (Wv, Cv, Dv). Where Wv denotes the size of the
task requiring computation, Cv is the number of CPU cycles
required to complete the computation of the task, and Dv

is the task’s maximum delay. It is possible for a vehicle to
process its task locally by utilizing its computing resources or
offload its task to nearby edge servers, taking advantage of the
server’s computing resources. Hence, the computation delay
depends on the offloading decision profiles of the vehicles. In
the following, we discuss the three cases of task computation,
including local, MES, and SES computing.

1) Local Computing: Here, we consider that vehicles have
different computation capabilities and have computation re-
sources denoted by Uv . If a vehicle decides to process its
tasks, Av locally, the total task execution time is given by:
Tv = Cv/Uv .

2) MES Computing: If a vehicle chooses to transfer its task
to a nearby MES, the offloading vehicle wirelessly transmits
the task to the MES. The total cost of executing the offloaded
task depends on the communication cost incurred from the
transmission and the cost incurred from the computation on
the MES. Let Uv,m be the total available computing resources
on the MES, w be the fraction of the task to be offloaded, and
Fv,m be the fraction of the resources allocated for computing
the task Av . Since the task size is Wv and the transmission
rate of offloading to a MES is RMES

v,m , the offloading time cost
can be expressed as:

TMES
v,m =

wWv

RMES
v,m

(7)

and the time for computing the task Av on the MES is:

Tm =
wCv

Fv,mUv,m
(8)

Thus, total task offloading and computing time is given as:

TMES
v = TMES

v,m + Tm (9)

3) SES Computing: If a vehicle offloads to a SES, the
offloaded task is transmitted through wireless communication
links to the SeNB and then transferred to the MEC server
via wired communication links. We neglect the transmission
time between the SeNB and the MEC server since the time
for the wired link transmission is relatively negligible. When
a vehicle offloads a task to the SES, it incurs costs due to
offloading to the SES and the processing costs incurred by
processing with the SES’s resources. Let Uv,s be the total
available computing resources on the SES, and Fv,s be the
fraction of the resources allocated for computing the task Av .
Since the size of the task is Wv and the transmission rate of
offloading to a SES is RSES

v,s , the offloading time cost is given
as:

TSES
v,s =

wWv

RSES
v,s

(10)

and the time for computing the task Av on the SES is:

Ts =
wCv

Fv,sUv,s
(11)

Thus, total task offloading and computing time is given by:

TSES
v = TSES

v,s + Ts (12)

D. Energy Model

The energy consumption in the system consists of the local
energy consumption in each vehicle and the energy consumed
when tasks are offloaded and executed on the MES or SES.

1) Local Energy Consumption: If clock frequency available
in each vehicle is Uv , and k is the effective switched capac-
itance depending on the architecture of the CPU available in
the vehicle [11]. The energy consumption required to execute
task Av can be expressed as: Ev = kCvU

2
v .

2) MES Energy Consumption: For offloading to MES, the
total energy consumption consists of the energy required to
offload the task and the energy consumed during the actual
task computation. Let Uv,m be the clock frequency available in
each MES for task computation, the total energy consumption
for tasks offloaded to MES can be expressed as:

Ev,m = pv
wWv

RMES
v,m

+ kwCvU
2
v,m (13)

3) SES Energy Consumption: Similarly, for tasks processed
by SES, the total energy consumption consists of the energy
required to offload to the SES and the energy consumed during
the actual task processing. Let Uv,s be the clock frequency
available in each SES for task computation, the total energy
consumption for tasks offloaded to SES can be expressed as:

Ev,s = pv
wWv

RSES
v,s

+ kwCvU
2
v,s (14)

IV. PROBLEM FORMULATION

In the vehicular MEC environment, vehicles send details
of their tasks, the available computational capabilities, and
energy resources to the MEC servers. The system utilizes the
information to manage the spectrum and provide resources for
computation. Thus, vehicles can offload their tasks to MEC
servers for processing and receive the results when completed.
If a MEC server cannot conclude a job within the specified
time delay Dv , it will notify the vehicle of failure, reinitiating
a new computation process. To satisfy the QoS requirements
of the system, the task offloading problem is formulated to
minimize the delay and energy consumption costs of the
system.

A. System Cost Function

The overall system cost consists of the delay and energy
consumption costs due to local computing and offloading
decisions made by the vehicles. The delay cost for a vehicle,
v at time, t, can be expressed as:

Ttotalv (t) = dvTv(t) + TMES
v,m (t) + TSES

v,s (t) (15)

and the energy cost is given by:

Etotalv (t) = dvEv(t) + Ev,m(t) + Ev,s(t) (16)

Therefore, the overall system cost can be expressed as:

C(t) =

V∑
v=1

Ttotalv (t) +

V∑
v=1

Etotalv (t),∀v ∈ V (17)

where Ttotalv (t) is the delay cost associated with vehicle, v
at time, t, and Etotalv (t) is the energy cost associated with
vehicle, v at time, t.

B. Cost Minimization Problem Formulation

The main objective of the system is to minimize the overall
cost of the system with a offloading policy that ensures an
optimal trade-off between task computation delay and energy
consumption. Thus, the optimization problem is given as:

min
dv,sv,mv,Fv,s,Fv,m

T∑
t=1

C(t)

s.t. C1 :
∑
v∈V

dv + sv +mv = 1, ∀v

C2 : Rv,s(t) ≤ Rv,s, ∀t
Rv,m(t) ≤ Rv,m, ∀t

C3 :

J∑
j=1

M∑
k=1,k ̸=m

pjhj,m ≤ Ov,m

C4 :

J∑
j=1

S∑
k=1,k ̸=s

pjhj,s ≤ Ov,s

C5 : Ttotal(t) ≤ Dv, ∀t
C6 : Etotal(t) ≤ Emax, ∀t

(18)

C1 - C6 denotes the constraints of the optimization problem
where C1 guarantees that a vehicle locally executes its task,
or offloads the task to either a MES or SES for computation.
C2 ensures that the total available spectrum is more than
the spectrum used by the vehicles during task offloading. C3
and C4 guarantee an acceptable data rate, ensuring that the
interference from other vehicles on the MES and SES do not
exceed a predefined threshold, Ov,m and Ov,s, respectively.
C5 guarantees that a task’s total execution time is less than
the maximum delay allowed for that task. C6 ensures that the
energy consumption due to task offloading and computation
is less than the maximum energy, Emax of the system.

The solution to this problem gives the outcome for the
decision variables dv , sv , and mv . However, these variables are
binary, and therefore, the problem is non-convex. Moreover,
the system considered is characterized by a dynamic network
and heterogeneous computation and energy capabilities, mak-
ing the optimization difficult to solve. To solve the problem,
we propose a DRL-based approach.

V. REINFORCEMENT LEARNING-BASED SOLUTION

Obtaining an optimal solution for computation offloading in
the vehicular network is crucial to ensuring that delay-sensitive
tasks can meet their deadlines while optimizing energy con-
sumption. Hence, we model the original optimization problem
into an MDP and use DRL-based approach to solve it. To
successfully formulate the network as an MDP, we identify
the state and action space, reward function, and the transition
probability of the system. The MDP is expressed as a 4-tuple
(X ,A,R,P), where X is the set of possible states of the
environment, A is the set of possible actions for each state,
R is the reward for each state and action pair, and P is the
probabilities of moving from one state to another.

We introduce the DRL architecture consisting of the state
space, agent space, reward, and transition probability functions
of the system, and then present the TD3 algorithm for solving
the cost minimization problem.

A. State, Action, and Reward Definition

The DRL-based solution is characterized by the state of
the environment, the action taken by an agent, the reward
maximized by the agent, and the transition probability of the
environment. Following is the description of these concepts:

1) Environment state: The MEC server receives updates
about the state and the task information of an offloading
vehicle at time, t. The agent then observes the network and
collects information about the system. If there are V vehicles
under a service area at time, t, the state of the system,
x(t) ∈ X can be expressed as:

x(t) = [RMES
V ,m(t), RSES

V ,m(t),WV , CV , CV,m(t), CV,s(t),

EV (t), EV,m(t), EV,s(t), V (t)]
(19)

2) Action space: The agent will make decisions based on
the observations of the environment state. The agent’s action
determines the offloading strategy that guides if local, MES,
or SES computing is selected. Also, based on the offloading
scheme, the agent will decide the appropriate percentage of
resources required to complete the tasks at the MEC servers.
Hence, the action space, a(t), can be expressed as:

a(t) = [dV , sV ,mV , FV,m(t), FV,s(t)] (20)

3) Reward Function: After taking an action, a(t), the agent
receives a reward, r(t), such that the reward is an effect of the
previous action. To guarantee that the network QoS demands
is satisfied, the delay and energy requirements must also be
satisfied. Hence, we define the reward function as:

r(t) = −

[∑
v∈V

Ttotalv (t) +
∑
v∈V

Etotalv (t)

]
(21)

Fig. 2: Architecture of the TD3-based solution

4) Transition Probability Function: The next state x′ in
MDP does not depend on the previous state, but only on the
current state, x. The transition probability function shows the
probability of passing from x to x′ and can be expressed as:

p(x′|x, a) = Pr[x(t+ 1) = x′|x(t) = x, a(t) = a] (22)

where x, a is the state-action pair at time step, t. The current
state and action of the system at time, t are denoted by x(t)
and a(t), respectively. The state of the environment at time
step (t+ 1) is denoted by x(t+ 1).

B. TD3 Algorithm

In the vehicular edge environment, moving vehicles in each
SeNB compute tasks locally or offload to a SES or a MES in
each time slot based on the agent’s decision. Also, the agent
determines the resources to make available for the computation
of each task. Since vehicles are mobile nodes, the available
resources and the transmission channel state of the network is
dynamic, making decisions based on current observation alone
difficult. To overcome these challenges, we use a model-free
method based on TD3 for the decision-making [12].

Fig. 2 shows the architecture of the TD3-based algorithm.
For each SeNB, the state space is given by eq. 19. At each
time step, t, the agent selects an action, a based on offloading
policy, π. For every action, the agent receives a reward, r and
observes the new state, x′. The discounted sum of rewards
received by the agent gives the return, G that the agent
accumulates and can be expressed as:

G =

[∞∑
b=0

γbr(t+ b)|π, x(t) = x, a(t) = a

]
, γ ∈ [0, 1] (23)

where γ is the discount factor that determines the weight of
present and future rewards. The DRL model goal is to find
the optimal offloading policy π∗ that maximizes the long-term
expected return, E{Qπ(x, a)}. Qπ(x, a) gives the reward value
of each state-action pair and can be expressed as:

Algorithm 1 TD3-Based Solution
1: INITIALIZE replay buffer Z
2: INITIALIZE main and target actor networks with weights ϕ and

ϕ′, respectively.
3: INITIALIZE main critic networks with weights Q(x, a|θ1) and

Q(x, a|θ2), respectively
4: INITIALIZE target critic networks with weights Q(x, a|θ1

′
) and

Q(x, a|θ2
′
), respectively

5: for i=1, ..., Number Of Episodes do
6: INITIALIZE the observation state x(t) = x(0)
7: while time step t < T do
8: Receive observation from the vehicular environment and

collect state x(t)
9: Each vehicle select action a(t) and decide whether to

compute task locally, or send task to either a SES or MES
10: Compute the reward r(t) and estimate the next state x(t+1)
11: if experiences < Z then
12: Store (x(t), a(t), r(t), x′(t)) in Z for all vehicles v ∈ V
13: else
14: Replace first experience with (x(t), a(t), r(t), x′(t)) in

Z for all vehicles v ∈ V
15: Sample mini-batch of (x, a, r, x′) for all vehicles from

Z
16: Evaluate y ← r(t) + γmini=1,2 Q(x′, ã|θi

′
), i = 1, 2

17: Update the weights θ1 and θ2 of the main critic networks
using,

18: L(θi)← 1
Z

∑M
j=1[y −Q(x, a|θi

′
)]2, i = 1, 2

19: if t mod d then
20: Update the weights ϕ of the main actor network using,
21: ∆ϕJ(ϕ) =

1
Z

∑[
∆ϕQ(x, a|θ1)|a=πϕ(x)∆ϕπ

ϕ(x)
]

22: Update the target networks using,
23: ϕ′ ←− τϕ+ (1− τ)ϕ′

24: θi
′
←− τθi + (1− τ)θi

′
, i = 1, 2

25: end if
26: end if
27: end while
28: end for

Qπ(x, a) = E
[∑∞

b=0 γ
br(t+ b)|π, x(t) = x, a(t) = a

]
, γ ∈ [0, 1] (24)

The TD3-based solution consists of an actor network with
parameter ϕ and two critic networks with parameters θ1 and θ2

for the main network. The solution also has a target network
which consists of an actor network with parameter ϕ′ and two
critic networks with parameters θ1

′

and θ2
′

. In addition, the
solution uses a replay buffer to store the experiences from the
environment that are used to train the actor and critic networks.

Algorithm 1 describes the architecture of the proposed
approach. We start in line 1-4 by randomly initializing the
parameters of the neural networks and set the capacity of
the replay buffer, Z to 105. Based on the actor network,
πϕ(x), the agent selects an action in each training episode
with some exploration noise ϵ in line 5-9. The vehicles then
decide on whether to compute tasks locally or offload to an

available MES or SES based on the chosen action. Also, each
MEC server decides on the fraction of resources to make
available for each offloaded task. After executing the action,
the agent will receive an immediate reward, r(t) and observe
the new state, x′ which are stored in the replay buffer, Z , as
a tuple,(x(t), a(t), r(t), x′) in line 10-14.

To prevent over-fitting, we add a random noise, ϵ̃ to the
action using:

ã(x′) = a(x′) + clip(ϵ− c, c), ϵ ∼ N(0, σ) (25)

where a(x′) is the action taken with respect to the next state,
xt+1 and σ is the standard deviation that defines the noise
policy. Then, we evaluate the target value, y in line 16, using:

y = r(t) + γ min
i=1,2

Q(x′, ã|θi
′
), i = 1, 2 (26)

where 0 < γ < 1. In line 17-18, the minimum values from
the two Q-functions, Q(x, a|θ1′) and Q(x, a|θ2′) are obtained
by minimizing the loss functions of the critic given as:

L(θi) =
1

Z

Z∑
j=1

[y −Q(x, a|θi
′
)]2, i = 1, 2 (27)

The weight, ϕ of the main actor network is updated in line
20-21 after every d time steps using the deterministic policy
gradient algorithm given by [13]:

∆ϕJ(ϕ) =
1

Z

∑[
∆ϕQ(x, a|θ1)|a=πϕ(x)∆ϕπ

ϕ(x)
]

(28)
where Z is the mini-batch of transitions from the replay buffer.
In line 22-24, we update the target networks every d time steps
using:

ϕ′ ←− τϕ+ (1− τ)ϕ′ (29)

θi
′
←− τθi + (1− τ)θi

′
, i = 1, 2 (30)

where τ represents the rate of updating the network.

VI. SIMULATION RESULTS AND ANALYSIS

This section presents the simulation results to demonstrate
the performance of our proposed approach. We first learn the
model for the vehicular edge environment and then test the
model under different network conditions. Here, we consider
a MeNB in 150×150m2 area and 20 SeNBs, with each SeNB
associated with an SES server. There are 10 MES and 4− 10
offloading vehicles connected to each SeNB at any time. Other
parameters used for the simulation are summarized in Table I.

We demonstrate the performance of proposed approach for
task offloading in MEC environment using four baselines:
Stochastic, Greedy, DDPG with MES and SES, and TD3
without MES.

We analyze the TD3-based solution using different learning
rates, γ. The simulation results in Fig. 3 show that increasing
learning rates makes the agent learn faster. However, with
large γ values, the agent may not reach the global solution
by converging at a local optimum. Since the results indicate
that using γ values of 0.01 and 0.1 leads to a sub-optimal

Fig. 3: Convergence performances for dif-
ferent learning rates

Fig. 4: Convergence performance for
different buffer capacity

Fig. 5: Convergence performance for
different batch sizes

TABLE I: Simulation Parameters

Parameter Value Parameter Value
B0 5 MHz Cv 2000 Megacycles
B1 10 MHz k 10−11

pv 0.1 W Uv,s 150 GHz
N0 -100 dBm Uv,m 20 GHz
Uv 20 GHz Wv [0.2, 1.2] Kbits

Discount Factor 0.99 Replay Memory Size 105

Learning rate 10−3 Mini-batch 128

solution, we chose a γ value of 0.0001 for the agent to learn
more optimal weights and settle on a global solution. With this
learning rate, the agent converges after 250 training episodes,
showing that the proposed approach can find the offloading
strategy required to minimize system cost. As described in
Algorithm 1, the actor and critic networks and the replay
buffer have weights requiring initialization. Fig. 4 shows the
convergence with different buffer sizes from 500 to 10,000.
We find that increasing the buffer size allows the algorithm to
converge better. We use a replay buffer of 10,000, meaning that
once the algorithm has saved 10,000 experiences, the agent
samples mini-batches of experiences to the update actor and
critic networks. This size allows the agent to learn from a
large pool of experience that may be difficult to save with
a small batch size. Fig. 5 shows that with a small batch
size of 64, the agent finds it difficult to efficiently utilize the
experiences stored in the buffer. With larger batch sizes, the
reward increases since the agent can sample more efficiently
from the experiences. However, large batch sizes increase
training time. Therefore, we choose a batch size of 128 for
our experiment. The weights of the actor and critic networks
are initialized by TensorFlow, an open-source library used for
machine learning. We set the number of episodes to 2000 and
the number of steps in an episode to 1000.

For an efficient network, the offloading scheme must make
optimal decisions under different network scenarios, such as
heterogeneous computing resources or an increased number
of offloading vehicles in the network. Fig. 6 illustrates the
effect of dynamic computing resources available at the SESs
on system cost under different scenarios. For this experiment,
we vary the total computing resources available in all SESs
and record the system cost, averaging over 3,000 environment
states. As shown, using proposed TD3-based solution with
cooperative MESs offers the lowest system cost compared

to other approaches. Specifically, the system cost of our
algorithm is 40.10%, 81.82%, 1.57%, and 34.06% lower
than the stochastic, greedy, DDPG with MES and SES, and
the TD3-based solution without MES, respectively. Overall,
the system cost for each scenario reduces with increasing
computing resources on the SES as more resources imply
faster computation time for each task. The result illustrates that
even with low available computing resources at the SES, the
proposed approach minimizes the system cost in the vehicular
edge environment and can therefore guarantee acceptable QoS.

We expect that the size of tasks in the network will be
dynamic and that the vehicles with extensive tasks can arrive
in the network. As the size of the task requiring computation
increases, we also expect an increase in the offloading and
processing time of the data in the infrastructure. This is
because larger task sizes will take longer to be offloaded to
either MES or SES. In addition, these tasks will also need
additional time for computation and may create a computation
bottleneck that increases system latency. To minimize the
system’s cost, the agent will adjust available resources for each
task and determine the decision profile of each vehicle. The
agent should still be able to optimize and achieve a minimal
delay in the system regardless of the size of the task requiring
computation. Fig. 7 demonstrates the total network delay with
different task sizes requiring computation. As we expect, the
delay in the system increases as the size of the task increases.
However, the TD3-based approach with cooperative MESs still
achieves the lowest delay compared to the other approaches.
Our approach achieves an average of 4.54%, 63.75%, 1.23%,
and 34.21% delay lower than the stochastic, greedy, DDPG
with MES and SES, and the TD3-based solution without MES,
respectively. This result shows that tasks can still be computed
in the fastest possible duration while optimizing the energy
usage in the network.

Fig. 8 shows the energy use in the network with a different
maximum number of vehicles in each SES. There can be
varying task size in each SES’s coverage area, and there
can be a different number of offloading vehicles in the SES
below the maximum value at any given time step. From the
results, only a slight increase in energy use is observed with
an increase in the number of vehicles. However, the proposed
TD3-based solution with cooperative MESs still shows that the

Fig. 6: Cost with available SES comput-
ing resources

Fig. 7: Delay with different task size for
vehicles in each SES

Fig. 8: Energy with maximum number of
vehicles in each SES

Fig. 9: Cost with maximum number of vehicles in each SES

energy usage in the system is minimized more efficiently when
compared with the baseline solutions. Using our approach, the
infrastructure consumes 3.12%, 31.58%, 2.27%, and 34.83%
less energy than the stochastic, greedy, DDPG with MES and
SES, and the TD3-based solution without MES, respectively.
This result illustrates that the proposed solution can optimize
energy usage even with additional network load and can
minimize the overall delay of the network.

In Fig. 9, we also illustrate the effect of increasing the
maximum number of vehicles in each SES has on the system
cost. Initially, the DDPG-based scheme seems to perform
better with less than five vehicles in each SES. However, as
the network becomes more complex with increasing loads,
the proposed TD3-based solution begins to show better per-
formance. With 10 vehicles in each SES, our approach out-
performs the stochastic, greedy, DDPG with MES and SES,
and the TD3-based baseline solution without MES by 5.58%,
32.29%, 2.48%, and 37.71%, respectively. Since TD3 does
well in complex scenarios and can optimally manage the
available system resources, the agent follows an offloading
policy that minimizes the overall system cost under different
network conditions.

VII. CONCLUSION

In this paper, we present a task offloading scheme aimed at
enhancing system delay and energy consumption in vehicular
edge networks. The proposed solution leverages vehicles in the
network as cooperative MESs to support MEC servers, thus
reducing the requests load on SESs and minimizing the system
cost. This cooperative decision-making by vehicles, SESs,

and MESs optimizes network delay and energy consumption.
Also, the approach ensures that vehicles can offload tasks
to available SES or MES in their coverage areas, and the
SES and MES can decide on the percentage of resources to
allocate for each offloaded task, thereby reducing computation
costs. To address the complexity of the problem, we model the
offloading problem as an MDP and employ a TD3-based DRL
algorithm to solve it. Our results demonstrate the superiority of
the proposed method compared to DDPG-based or TD3-based
baseline solutions without cooperative MESs.

REFERENCES

[1] H. Olufowobi, C. Young, J. Zambreno, and G. Bloom, “Saiducant:
Specification-based automotive intrusion detection using controller area
network (can) timing,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 2, pp. 1484–1494, 2020.

[2] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb,
“Survey on multi-access edge computing for internet of things realiza-
tion,” IEEE Communications Surveys & Tutorials, vol. 20, no. 4, 2018.

[3] M. A. Salahuddin, A. Al-Fuqaha, and M. Guizani, “Reinforcement
learning for resource provisioning in the vehicular cloud,” IEEE Wireless
Communications, vol. 23, no. 4, pp. 128–135, 2016.

[4] R. Q. Hu et al., “Mobility-aware edge caching and computing in
vehicle networks: A deep reinforcement learning,” IEEE Transactions
on Vehicular Technology, vol. 67, no. 11, pp. 10 190–10 203, 2018.

[5] Y. Liu, H. Yu, S. Xie, and Y. Zhang, “Deep reinforcement learning
for offloading and resource allocation in vehicle edge computing and
networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 11,
pp. 11 158–11 168, 2019.

[6] H. Peng and X. Shen, “Deep reinforcement learning based resource
management for multi-access edge computing in vehicular networks,”
IEEE Transactions on Network Science and Engineering, vol. 7, 2020.

[7] B. Hazarika, K. Singh, S. Biswas, and C.-P. Li, “Drl-based resource al-
location for computation offloading in iov networks,” IEEE Transactions
on Industrial Informatics, 2022.

[8] “Twin delayed ddpg,” Open AI, Spinning Up. [Online]. Available:
https://spinningup.openai.com/en/latest/algorithms/td3.html

[9] A. Mukherjee, “Macro-small cell grouping in dual connectivity lte-
b networks with non-ideal backhaul,” in 2014 IEEE International
Conference on Communications (ICC). IEEE, 2014, pp. 2520–2525.

[10] C. E. Shannon, “Communication in the presence of noise,” Proceedings
of the IRE, vol. 37, no. 1, pp. 10–21, 1949.

[11] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu, “Energy-
optimal mobile cloud computing under stochastic wireless channel,”
IEEE Transactions on Wireless Communications, vol. 12, no. 9, 2013.

[12] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approxi-
mation error in actor-critic methods,” in International conference on
machine learning. PMLR, 2018, pp. 1587–1596.

[13] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in International conference
on machine learning. PMLR, 2014, pp. 387–395.

