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Figure 1. Qualitative and quantitative comparison of reconstruction results. (a) Ground Truth image of the Barn scene, highlighting a
region of interest in red. (b) Reconstruction result from baseline 3D Gaussian Splatting, showing noticeable artifacts and lack of detail.
(c) Reconstruction results from our proposed method (DAPS-AGF) demonstrate improved reconstruction of distant objects. (d) Plot
showing the memory efficiency of AGF compared to the baseline 3DGS. It significantly reduces the number of Gaussians required during
optimization while maintaining high-quality reconstruction.

Abstract

3D Gaussian Splatting (3DGS) is a recent technique for
real-time scene reconstruction. However, in large outdoor
scenes, it often fails to reconstruct peripheral or distant re-
gions accurately. These areas appear in fewer views and re-
ceive weaker multi-view supervision, leading to lower gra-
dient signals, fewer Gaussians, and ultimately degraded
structural quality. To address this limitation, we propose
two complementary enhancements to the 3DGS pipeline.
Our Depth-Aware Perceptual Similarity (DAPS) module
uses monocular depth to strengthen optimization in weakly
supervised regions, leading to sharper edges and improved
reconstruction quality. Additionally, we introduce Adaptive
Gradient Filtering (AGF), a dynamic densification mecha-
nism that selectively clones Gaussians based on gradient
statistics, ensuring visually faithful reconstruction without
excessive memory growth. We curate a challenging out-
door benchmark by selecting scenes from the Tanks & Tem-
ples and Mip-NeRF 360 datasets, designed to test recon-
struction quality and memory efficiency under real-world

visual complexity. Experimental results show DAPS im-
proves SSIM by 3.05%, PSNR by 3.94%, and reduces LPIPS
by 17.78%, while AGF cuts memory usage by 38.5% over
baseline 3DGS without sacrificing image quality.

1. Introduction

Scene reconstruction is the cornerstone of numerous AI-
driven applications, from creating immersive augmented
and virtual reality (AR/VR) environments to the reliable
operation of autonomous systems [4]. Among recent ad-
vances in scene reconstruction, 3D Gaussian Splatting [12]
stands out for its ability to reconstruct scenes with both ac-
curacy and real-time efficiency. 3DGS effectively captures
visual and structural complexities using anisotropic Gaus-
sian splats and spherical harmonics for precise color repre-
sentation.

Recent research on 3D Gaussian Splatting has produced
numerous improvements, mainly in memory optimization
and quality enhancements. On the memory optimization



side, several works [8, 9, 11, 15, 18–21, 25] aim to reduce
the storage footprint (vector quantization) and number of
Gaussians (pruning) required to reconstruct a scene. Mean-
while, other works focus on improving 3DGS quality. A
prominent direction is incorporating depth guidance to im-
prove reconstruction from limited or imperfect data [3, 5–
7, 14, 17, 23, 24].

While recent depth-guided approaches have made no-
table progress in addressing sparse-view or few-shot set-
tings, they primarily focus on incorporating external pri-
ors to compensate for limited data. In contrast, we iden-
tify a fundamentally different and underexplored challenge.
We noticed that even with access to full training views,
3DGS often fails to adequately reconstruct regions that re-
ceive weak gradient supervision, such as peripheral or dis-
tant structures. These regions may be visible in the data
a few times, yet remain under-optimized due to their low
photometric error and limited multi-view constraints, as il-
lustrated in Figure 1. However, attempts to enhance such
under-optimized regions can often trigger excessive Gaus-
sian cloning, especially when standard densification mecha-
nisms are used. Although recent works have proposed prun-
ing [20] or compression techniques [25] to reduce the mem-
ory footprint, these approaches are largely applied post hoc
or uniformly across the scene. They are not designed to
regulate memory dynamically during optimization, nor do
they account for localized reconstruction needs in weakly
supervised areas.

We propose two complementary strategies, 1) Depth-
Aware Perceptual Similarity (DAPS) and 2) Adaptive Gra-
dient Filtering (AGF). DAPS improves reconstruction qual-
ity in sparsely observed regions by integrating monocular
depth information directly into the optimization process. By
emphasizing regions with higher depth uncertainty, DAPS
guides the reconstruction to target structurally ambiguous
areas explicitly. This approach results in more consistent
and detailed reconstructions of peripheral scene elements.
Complementing DAPS, AGF introduces a dynamic Gaus-
sian densification strategy. Instead of using fixed thresh-
olds, AGF adaptively regulates Gaussian cloning based on
the statistical distribution of gradient magnitudes encoun-
tered during training. This adaptive approach effectively
balances the memory usage and computational efficiency of
the reconstruction, achieving detailed reconstructions with-
out incurring excessive computational costs.

The key contributions of this work can be outlined as
follows:
• We propose DAPS, a depth-aware optimization strategy

that improves reconstruction in regions with weak su-
pervision, such as distant or peripheral areas, by using
monocular depth as a proxy to identify where optimiza-
tion may be insufficient.

• We propose AGF, an adaptive Gaussian densification

mechanism that regulates cloning dynamically based on
the statistical distribution of gradient magnitudes, achiev-
ing a superior balance between reconstruction quality and
memory usage.

• We create a new Outdoor Scenes benchmark by select-
ing challenging outdoor scenes from Mip-NeRF 360 and
Tanks & Temples datasets.

• We evaluate our approach on the Outdoor Scenes bench-
mark, demonstrating consistent improvements in recon-
struction quality, particularly in sparsely observed re-
gions, while reducing memory usage compared to base-
line densification strategies.

2. Related Work
Scene reconstruction is a critical area of research in com-
puter vision and graphics, with applications in autonomous
driving, virtual reality, and robotics [26]. While traditional
methods rely on dense point clouds [16] or meshes [10],
recent advances such as 3D Gaussian Splatting offer more
efficient and realistic representations. In this section, we re-
view the key developments in GS, focusing on the integra-
tion of depth information for enhanced reconstruction and
strategies for improving memory efficiency.

2.1. Depth-Aware Gaussian Splatting
Several recent works have integrated depth information into
3D Gaussian Splatting (3DGS) to improve reconstruction
quality, particularly in sparse-view settings [6], few-shot
scenes [7], or SLAM-based pipelines [17]. Chung et al. [7]
propose depth-guided geometric losses and smoothness
constraints to improve surface consistency under few-shot
supervision. This idea is further refined in SAD-GS [14],
which introduces shape-aligned depth regularization, lead-
ing to sharper reconstructions and improved novel view syn-
thesis.

Other works use multi-view stereo (MVS) cues. MVS-
plat [6] incorporates cost volumes, plane-sweeping, and
cross-view feature matching to produce consistent depth
maps in sparse multi-view settings, enhancing geometry
quality while maintaining inference efficiency. Similarly,
Depth-Splat [23] integrates monocular depth into 3DGS by
fusing global context with image features, achieving strong
depth estimation with limited views. DASH-Gaussian [5]
enhances reconstruction by combining sparse depth and se-
mantic priors to guide splat initialization and improve per-
formance in indoor scenes. CDGS [24] introduces an adap-
tive confidence-driven depth fusion strategy for handling
depth ambiguity across sparse input views.

While these approaches successfully exploit depth pri-
ors for geometric refinement and sparse-view compensa-
tion, they largely focus on improving depth accuracy or
enforcing global consistency. Notably, most operate under
sparse or few-shot supervision and do not address the opti-



mization bias present in full-supervision settings. In large-
scale scenes, peripheral or distant regions may still suffer
from weak gradient supervision due to limited visibility or
low photometric error in those regions, leading to under-
densification and degraded reconstruction.

In contrast, our proposed DAPS uses monocular depth
not as a geometric constraint but as a driver of perceptual
supervision. By selectively emphasizing regions with high
depth uncertainty, DAPS guides optimization toward under-
represented areas. This targeted supervision improves re-
construction detail in peripheral regions.

2.2. Memory Optimized Gaussian Splatting

3DGS has a high memory footprint, requiring millions
of Gaussians to represent complex scenes. This substan-
tial memory usage poses significant challenges in storage,
rendering efficiency, and scalability for larger scenes and
resource-constrained devices. To address these challenges,
researchers have explored techniques such as vector quanti-
zation and pruning [1].
Vector Quantization. This approach compresses Gaussian
attributes by clustering similar parameters. Compression
techniques such as CompGS [18] framework use K-means
clustering to optimize Gaussian parameters into compact
codebooks, achieving up to a 45–50× reduction in storage
and a 3× speed improvement in rendering. This approach
was further refined with sensitivity-aware clustering [19],
where parameters contributing minimally to reconstruction
were grouped and quantized, achieving up to 31× compres-
sion. Additionally, the EAGLES [11] framework introduces
lightweight encoding for attributes such as color and rota-
tion by using quantized embeddings, achieving memory re-
ductions of 10–20× while preserving the quality of recon-
struction.
Pruning Strategies. Pruning eliminates redundant Gaus-
sians to improve memory and computational efficiency. A
compact 3D Gaussian representation framework was intro-
duced by [15] that leverages learnable masks to identify and
remove Gaussians with minimal impact on rendering qual-
ity. Similarly, LightGaussian [8] employed a global signif-
icance score to guide pruning, achieving a 15× compres-
sion rate, while maintaining visual quality and increasing
the rendering speeds to over 200 FPS. Pateux et al.[21] in-
troduce a Bayesian optimization framework that selects a
minimal subset of Gaussians to balance model size with re-
construction fidelity. Zhang et al.[25] present LP-3DGS, a
learnable pruning approach that predicts which Gaussians
to retain based on scene visibility and feature importance.
Papantonakis et al.[20] introduce a pruning and quantiza-
tion pipeline that compresses the 3DGS representation by
adapting the number of spherical harmonics and reduc-
ing redundancy. Farooq et al.[9] propose a coarse-to-fine
optimization strategy that incrementally refines Gaussians

while maintaining compactness through spatial grouping.
Despite these advancements, current approaches primar-

ily focus on post-optimization strategies, such as compres-
sion and pruning, which identify redundancies after Gaus-
sian attributes have been fully optimized. A significant
drawback of these strategies is their requirement for high-
storage GPUs for execution.

To address this limitation, we propose Adaptive Gradient
Filtering (AGF), a novel mechanism that selectively filters
Gaussians during the optimization process. This approach
effectively prevents unnecessary Gaussian densification at
the source, enhancing memory efficiency from the outset
and reducing reliance on resource-intensive post-processing
techniques.

3. Preliminary
3D Gaussian Splatting [12] introduces a novel approach
to scene reconstruction by introducing Gaussian spheres
as the fundamental representation. Unlike traditional point
clouds, 3DGS encodes each Gaussian with a set of attributes
(Gaussian primitives) such as position, color, opacity, and
shape, enabling adaptive reconstruction based on input im-
ages and camera priors. The core of 3DGS lies in the Gaus-
sian function, defined in eq. 1, where G(x) represents the
Gaussian density at a point x. The Σ is the covariance ma-
trix that encodes the spatial structure of the Gaussian.

G(x) = e−
1
2x

TΣ−1x (1)

The covariance matrix Σ, expressed in eq. 2, combines a
diagonal scaling matrix S representing the anisotropic scal-
ing of the Gaussian along its principal axes, and a rotation
matrix R that determines the orientation of the Gaussian.

Σ = RSSTRT (2)

The optimization process employs a stochastic gradient
descent to align each Gaussian primitive to the underlying
scene geometry and appearance.

4. Methodology
This section outlines the proposed DAPS and AGF tech-
niques, highlighting their contributions to enhancing the ef-
ficiency and quality of scene reconstruction. Figure 2 pro-
vides a high-level overview of their integration within the
3DGS framework.

Depth-Aware Perceptual Similarity (DAPS). Regions
that appear less frequently across camera views, such as
distant backgrounds or side-facing surfaces, often receive
weaker gradient supervision during training. As a result,
these under-represented areas are prone to reconstruction
errors and lack structural detail. To address this issue, we
propose Depth-Aware Perceptual Similarity (DAPS), a loss



Figure 2. Overview of the proposed approach. The pipeline begins with Structure-from-Motion (SfM) to generate a sparse point cloud,
followed by Gaussian initialization. Monocular depth maps are extracted from input images to guide the DAPS module, which emphasizes
regions farther from the camera during optimization. AGF dynamically adjusts the Gaussian cloning threshold based on the statistical
distribution of gradient magnitudes, reducing unnecessary densification. Together, these modules improve reconstruction quality in under-
represented regions while maintaining memory efficiency during rendering.

function that incorporates depth information to guide learn-
ing toward these challenging regions. Instead of treating all
pixels equally, DAPS uses per-pixel depth predictions to as-
sign greater importance to areas that are farther from the
camera, encouraging the model to preserve structure and
improve perceptual consistency in those regions.

Given an input image I ∈ R3×H×W and its recon-
structed counterpart Î , we first compute the SSIM map us-
ing local window statistics:

SSIMmap(I, Î)i =
(2µIµÎ + C1)(2σIÎ + C2)

(µ2
I + µ2

Î
+ C1)(σ2

I + σ2
Î
+ C2)

(3)

where µI , µÎ , σ2
I , σ2

Î
, and σIÎ denote the local means,

variances, and covariance within a fixed-size window, and
C1, C2 are constants for numerical stability.

To modulate SSIM with scene geometry, we estimate a
per-pixel depth map D ∈ RH×W from the ground truth
image I using the MiDaS monocular depth estimator [22]
denoted as M. The depth map is normalized to the [0, 1]
range.

D = M(I), (4)

The DAPS loss is then defined as the weighted average
of the SSIM map and depth map as:

LDAPS(I, Î, D) =
1

N

N∑
i=1

(1 + β ·Di) · SSIMmap(I, Î)i

(5)
where N is the total number of pixels, β is a scaling

parameter controlling depth influence, Di is the i-th pixel
from D, and SSIMmap(I, Î)i is the value corresponding to
the i-th pixel in SSIMmap(I, Î). To ensure both perceptual
similarity and pixel-level accuracy, we combine LDAPS with
the L1 norm, LL1, which measures absolute differences be-
tween the predicted and ground-truth images, expressed as:

LL1(I, Î) =
1

N

N∑
i=1

|Ii − Îi| (6)

resulting in the final loss:

L(I, Î, D) = α ·LL1(I, Î) + (1−α) ·LDAPS(I, Î, D) (7)

where α ∈ [0, 1] determines the balance between the
two components. The composite loss ensures both accurate
reconstruction and improved perceptual quality in under-
optimized regions. This approach reduces artifacts and en-
hances the completeness of the reconstructed scene.

Adaptive Gradient Filtering (AGF). While DAPS signifi-
cantly improves reconstruction quality by adding Gaussians



to under-represented regions, this increased supervision can
also lead to higher memory usage. Moreover, 3D Gaus-
sian Splatting inherently requires substantial memory due
to its dense representation and frequent Gaussian splitting
and cloning during optimization.

While both cloning and splitting contribute to Gaussian
growth, cloning is the dominant source of redundancy in
3DGS. Cloning creates identical copies of Gaussians and
does not alter their attributes, often oversaturating already
well-optimized areas. In contrast, splitting introduces varia-
tions and is applied more sparingly. Therefore, AGF focuses
on controlling cloning, which has a more significant impact
on memory.

AGF introduces an adaptive gradient threshold (AGT)
mechanism to dynamically adjusts the densification thresh-
old based on the global gradient distribution, allowing for
selective and efficient cloning. This adaptive strategy en-
sures cloning is applied where it is most beneficial, mini-
mizing redundant memory usage with minimal degradation
in performance. Mathematically, AGF operates as a binary
mask that determines which Gaussians undergo cloning and
is defined as:

AGFi =

{
1, ∥∇loss∥i ≥ AGT
0, otherwise,

(8)

where ∥∇loss∥i represents the gradient magnitude of the loss
function for Gaussian i, and AGT is computed as:

AGT = max(ϵ, γ ·max(∥∇loss∥)) (9)

with ϵ setting a lower bound to prevent excessively small
thresholds in low-gradient regions, γ scaling the threshold
proportionally to the maximum gradient magnitude, and
max(∥∇loss∥) being the global maximum gradient value
that changes dynamically.

Cloning is applied to the selected Gaussians after mask-
ing. Given an original set G = {g1, g2, . . . , gN} and a sub-
set Gc = {gi ∈ G | AGFi = 1} selected for cloning, the
operation is expressed as:

G′ = G ∪ {g′i | gi ∈ Gc} (10)

where, G′ is the updated set after cloning, and g′i is a cloned
Gaussian derived from gi. This adaptive strategy ensures
that cloning targets regions where it is most beneficial, re-
ducing memory overhead while maintaining reconstruction.

By integrating DAPS and AGF into the 3DGS pipeline,
our method adaptively enhances the reconstruction quality
of under-represented regions while simultaneously manag-
ing memory usage. DAPS prioritizes optimization in pe-
ripheral and background areas, ensuring a more balanced
scene representation. Meanwhile, AGF dynamically adjusts
the Gaussian cloning threshold based on the gradient distri-
bution, effectively reducing unnecessary densification and

SSIM (↑) PSNR (↑) LPIPS (↓)

Scene 3DGS
3DGSDAPS

(Ours)
3DGS

3DGSDAPS

(Ours)
3DGS

3DGSDAPS

(Ours)

Family 0.925 0.952 28.39 29.88 0.112 0.063
Francis 0.920 0.940 32.19 34.04 0.153 0.110
Train 0.815 0.838 22.05 21.80 0.206 0.159
Ignatius 0.928 0.954 30.17 31.98 0.084 0.046
Barn 0.951 0.968 30.35 33.53 0.073 0.039

Bicycle 0.663 0.718 23.56 23.50 0.335 0.249
Flowers 0.528 0.572 20.55 20.63 0.415 0.360
Garden 0.828 0.849 26.20 26.22 0.163 0.123
Stump 0.722 0.760 25.62 26.05 0.294 0.229
Treehill 0.587 0.610 22.07 21.52 0.417 0.343

Average 0.787 0.816 26.12 26.92 0.225 0.172

Table 1. Performance evaluation of 3DGSDAPS on the outdoor
scenes dataset. 3DGSDAPS demonstrates consistent improvements
in SSIM, PSNR, and LPIPS over the baseline 3DGS across both
datasets.

promoting efficient scene representation without compro-
mising visual quality.

5. Experiments
5.1. Evaluation Setup
We adopt 3D Gaussian Splatting (3DGS) [12] as our base-
line 3DGSBase and evaluate our method by progressively
incorporating the two proposed modules. To measure the
combined effect of both modules, we evaluate the full
model 3DGSDAPS+AGF, where both DAPS and AGF are in-
tegrated into the pipeline. To analyze the individual impact
of each component, we further evaluate two intermediate
variants. 3DGSDAPS, which includes only the DAPS mod-
ule, and 3DGSAGF, which includes only the AGF module.
This staged evaluation setup enables a detailed comparison
across all variants.

5.2. Datasets
We construct a custom evaluation dataset by combining out-
door scenes from two widely recognized benchmarks for
3D scene reconstruction, MIP-NeRF 360 [2] and Tanks
& Temples [13]. Our selected scenes include Train, Ig-
natius, Barn, Family, Francis, Bicycle, Flowers, Garden,
Stump, and Treethill. This curated subset, referred to as our
Outdoor-Scenes Benchmark, is used consistently across all
experiments and ablation studies.

5.3. Implementation Details
Our experiments were conducted on an NVIDIA RTX 6000
Ada Generation GPU with 48 GB of VRAM. We use the



SSIM (↑) PSNR (↑) LPIPS (↓) Memory GB (↓)

Outdoor
Scenes

3DGS
3DGS(DAPS + AGF)

(Ours)
3DGS

3DGS(DAPS + AGF)

(Ours)
3DGS

3DGS(DAPS + AGF)

(Ours)
3DGSDAPS

3DGS(DAPS + AGF)

(Ours)

Family 0.925 0.954 28.39 30.39 0.112 0.062 0.64 0.49
Francis 0.920 0.941 32.19 34.56 0.153 0.109 0.52 0.36
Train 0.815 0.837 22.05 22.98 0.206 0.173 0.96 0.50
Ignatius 0.928 0.956 30.17 32.38 0.084 0.045 1.09 0.75
Barn 0.951 0.968 30.35 33.46 0.073 0.041 0.84 0.53

Bicycle 0.663 0.695 23.56 23.45 0.335 0.288 3.9 1.3
Flowers 0.528 0.560 20.55 20.55 0.415 0.376 2.7 1.6
Garden 0.828 0.841 26.20 26.07 0.163 0.142 4.0 2.0
Stump 0.722 0.754 25.62 25.96 0.294 0.245 4.2 2.8
Treehill 0.587 0.604 22.07 21.72 0.417 0.366 3.0 1.6

Average 0.787 0.811 26.12 27.15 0.225 0.185 2.19 1.19

Table 2. Performance and memory usage evaluation of 3DGS(DAPS + AGF) on outdoor scenes dataset. The combined approach maintains
higher SSIM, PSNR, and LPIPS scores than the baseline 3DGS while efficiently controlling the number of Gaussians.

Figure 3. Qualitative comparison between baseline 3DGS and our proposed DAPS-AGF method across various outdoor scenes. Red boxes
highlight under-optimized regions that are typically difficult to reconstruct, such as background structures and distant objects. Compared
to the baseline, our method produces sharper edges, more consistent geometry, and improved detail preservation in such areas.

following hyperparameters for the experiments: α = 0.5,
β = 1, γ = 0.03, and ϵ = 3× 10−4. These values were se-
lected to ensure balanced contributions from the DAPS and
AGF modules during optimization. Scenes from Tanks &
Temples are optimized for 30k iterations, while MIP-NeRF
360 scenes are optimized for 7k iterations at 4× image res-
olution.

6. Results and Comparisons

3DGS with DAPS + AGF. Table 2 presents the com-
parison between the original 3DGS baseline and our en-

hanced method (3DGSDAPS + AGF) on the outdoor scenes
datasets. Across all scenes, our approach consistently yields
higher SSIM and PSNR scores, along with significantly
lower LPIPS, indicating improved structural fidelity and
perceptual similarity. These gains are most evident in
scenes with complex geometry or peripheral content, where
traditional 3DGS tends to underperform (Figure 3).

While DAPS improves reconstruction quality by enhanc-
ing under-represented regions, it also increases memory us-
age due to additional Gaussian proliferation. By introduc-
ing AGF, we reduce this overhead by 45.6% relative to
DAPS, without sacrificing visual quality. This demonstrates



Scene
SSIM (↑) PSNR (↑) LPIPS (↓) Memory GB (↓)

3DGS 3DGSAGF (ours) 3DGS 3DGSAGF (ours) 3DGS 3DGSAGF (ours) 3DGS 3DGSAGF (ours)

Family 0.925 0.923 28.39 28.57 0.112 0.117 0.21 0.15
Francis 0.920 0.919 32.19 32.41 0.153 0.155 0.14 0.09
Train 0.815 0.806 22.05 21.93 0.206 0.221 0.26 0.16
Ignatius 0.928 0.925 30.17 30.22 0.084 0.089 0.33 0.20
Barn 0.951 0.952 30.35 31.98 0.073 0.072 0.27 0.16

Bicycle 0.663 0.637 23.56 23.39 0.335 0.368 0.85 0.51
Flowers 0.528 0.501 20.55 20.22 0.415 0.444 0.60 0.35
Garden 0.828 0.809 26.20 25.99 0.163 0.201 1.10 0.59
Stump 0.722 0.701 25.62 25.37 0.294 0.327 0.86 0.66
Treehill 0.587 0.572 22.07 22.04 0.417 0.442 0.56 0.33

Average 0.787 0.775 26.12 26.21 0.225 0.243 0.52 0.32

Table 3. Performance and memory usage evaluation of 3DGFAGF on outdoor scenes dataset. The table demonstrates AGF’s ability to
achieve substantial memory savings while maintaining competitive reconstruction quality.

Figure 4. Comparison of the number of Gaussians over optimization iterations between the baseline 3DGS and our AGF module on
outdoor scenes, demonstrating significant memory efficiency with AGF across different scenes.

that AGF effectively controls memory growth, enabling
high-quality reconstructions with improved efficiency. The
combined effect of DAPS and AGF leads to more accu-
rate reconstructions with fewer artifacts and enhanced ef-
ficiency, validating the strength of our proposed enhance-
ments in both reconstruction quality and resource manage-
ment.

3DGS with DAPS. To assess the contribution of our Depth-
Aware Perceptual Similarity module in isolation, we com-
pare 3DGSDAPS against the original 3DGS baseline across
all outdoor scenes (Table 1). The results show that integrat-
ing DAPS alone leads to consistent improvements in struc-
tural similarity (SSIM), peak signal-to-noise ratio (PSNR),
and perceptual quality (LPIPS).

These gains are particularly pronounced in scenes with
larger depth variation and sparse multi-view coverage,
where under-optimized regions are more common. By mod-
ulating perceptual similarity based on depth cues, DAPS en-
courages the network to better supervise such regions dur-
ing optimization.

3DGS with AGF. To evaluate the impact of our Adaptive
Gradient Filtering (AGF) module, we compare 3DGSAGF

against the baseline 3DGS across all benchmark scenes (Ta-
ble 3). Results show that 3DGSAGF reduces memory con-
sumption by more than 38% on average, while maintaining
comparable SSIM, PSNR, and LPIPS scores to the base-
line. This demonstrates that AGF effectively controls mem-
ory growth without compromising reconstruction quality,
making it a compelling choice for large-scale or resource-
constrained scenarios.

To further illustrate this behavior, Figure 4 presents the
number of Gaussians over optimization iterations. The
baseline model exhibits uncontrolled growth due to fixed
densification thresholds, leading to excessive memory us-
age. In contrast, AGF produces a smoother, more compact
growth curve by suppressing redundant Gaussian replica-
tion in well-optimized regions.

6.1. Ablation Studies
To thoroughly evaluate our proposed components, we con-
ducted a series of ablation studies that analyze the individ-



DAPS AGF SSIM PSNR LPIPS

✗ ✗ 0.928 30.17 0.084
✓ ✗ 0.954 31.98 0.046
✗ ✓ 0.925 30.22 0.089
✓ ✓ 0.956 32.38 0.045

Table 4. Ablation results on the Ignatius
scene using different combinations of our
proposed DAPS and AGF modules.

Approach Memory (GB)

3DGS (Baseline) 0.33
Ours (AGF) 0.20

Table 5. Memory consumption com-
parison on the Ignatius scene.

Scene PSNR (↑) SSIM (↑)
3DGS Ours 3DGS Ours

Family 28.39 30.39 0.925 0.954
Treehill 22.07 21.72 0.587 0.604

Table 6. PSNR and SSIM comparison between base-
line (3DGS) and our method (DAPS+AGF) on Fam-
ily and Treehill scenes.

Figure 5. Example images from the Family and Treehill scenes.

ual contributions of DAPS and AGF on reconstruction qual-
ity and memory efficiency.

Impact of DAPS and AGF Modules. Table 4 summa-
rizes the performance impact of different configurations us-
ing the Ignatius scene from the outdoor scenes dataset. Inte-
grating only DAPS significantly boosts reconstruction met-
rics (SSIM, PSNR, and LPIPS), reflecting improved percep-
tual and structural details. On the other hand, adding only
AGF maintains comparable quality to the baseline, confirm-
ing that the memory optimization through adaptive gradient
filtering does not degrade visual performance. Combining
both modules (DAPS + AGF) achieves the best overall per-
formance, indicating that our proposed methods are com-
plementary.

Memory Efficiency Analysis. Table 5 highlights the ef-
fectiveness of AGF in controlling memory usage, showing
a substantial reduction (approximately 39%) compared to
the 3DGS baseline without sacrificing reconstruction qual-
ity. This demonstrates that AGF successfully constrains the
number of Gaussians during optimization, ensuring efficient
memory allocation.

Perceptual vs. Pixel-Level Response to Depth-Aware
Supervision. Table 6 shows that while both Family and
Treehill scenes gain perceptual improvements (higher
SSIM) with DAPS, only Family sees a PSNR boost. This
is because the Family scene (Figure. 5 (a)) has distant re-
gions that are composed of well-defined, rigid structures
with reliable depth estimation, allowing DAPS to enhance
both structural and pixel-level reconstruction.

In contrast, Treehill scene (Figure. 5 (b)) is dominated by

natural foliage that often lacks sharp depth boundaries. In
such regions, monocular depth estimation becomes less reli-
able. Consequently, while DAPS improves perceptual struc-
ture (SSIM), it may introduce pixel-level inconsistencies,
reducing PSNR. This highlights a limitation of applying
depth-based weighting in depth-ambiguous scenes.

7. Conclusion

In this work, we identified a key limitation in 3D Gaus-
sian Splatting, that is, poor reconstruction quality in under-
supervised regions such as scene backgrounds and periph-
eral structures, often caused by limited viewpoint coverage.
To address this, we proposed two complementary modules.
Depth-Aware Perceptual Similarity (DAPS) improves opti-
mization in these regions by using the depth cues to guide
the optimization process, while Adaptive Gradient Filter-
ing (AGF) reduces memory overhead by selectively regu-
lating Gaussian cloning via dynamic gradient-based thresh-
olds. Together, DAPS and AGF enhance both accuracy and
efficiency. Our method improves SSIM by 3.05%, PSNR
by 3.94%, and reduces LPIPS by 17.78% over the 3DGS
baseline while maintaining the memory usage. AGF alone
cuts memory usage by 38.5% over the baseline. These gains
are achieved without compromising visual quality, demon-
strating our approach’s strength in reconstructing complex
outdoor scenes. Extending these benefits to indoor envi-
ronments with limited depth variation remains a promising
direction for future work.
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