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Abstract—The Internet of Things presents a transformative
era of device connectivity while creating a new paradigm shift
in the process. This, however, has been met with some major
pitfalls, such as an increase in device insecurity, characterized by
Main-in-The Middle (MiTM) attacks. In this paper, we propose
IoT-MGSec, a novel solution to mitigating MiTM attacks using
graph-based learning. Our approach employs graph modeling
and embedding techniques to learn node and edge features such
that we can generate a robust classifier to detect MiTM attacks
with high accuracy. We validate the effectiveness of our approach
by comparing its performance to baseline models, and the results
indicate that our approach outperforms the baseline models. The
findings suggest that this approach offers a more robust solution
to detecting and mitigating Man-in-the-middle attacks, and it
holds potential for integration into real-time intrusion detection
systems, further enhancing its capacity to secure devices within
the IoT landscape.

Index Terms—Internet of Things, Intrusion detection, Graph
representation learning, Man-in-the-Middle attack.

I. INTRODUCTION

The Internet of Things (IoT) has revolutionized how devices
interact, enhancing user experiences across various domains,
from smart homes to industrial automation. IoT has greatly
improved convenience and usability by enabling real-time
communication among heterogeneous devices. Its implemen-
tation has yielded substantial benefits across multiple do-
mains, enhancing efficiency and overall quality of life [1],
[2]. However, despite its benefits, security has remained a
critical concern to its widespread adoption. Many existing
security measures have been implemented as an afterthought,
which has led to potentially undesirable consequences. In
addition, the heterogeneous connectivity results in new attack
vectors, which necessitates proactive planning and innovative
intrusion detection and prevention techniques. Among the
myriad threats faced by IoT ecosystems, Man-in-The-Middle
(MiTM) [3] attacks have emerged as particularly insidious.
MiTM attacks represent one of the most covert threats in an
IoT environment, as such attacks can discreetly intercept, alter,
inject malicious payloads, and eavesdrop on communications
between parties without their knowledge. This potentially can
result in severe long-term consequences if not adequately
addressed.

There has been some research in the area of mitigating
MiTM attacks. Alicherry et al. [4] proposed DoubleCheck, a
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low-overhead approach to mitigate MiTM attacks that verifies
the network connection path. Benton et al. [5] proposed
an approach that verifies the executing device’s certificate
thumbprint against a stored certificate for detecting MiTM
attacks in the Secure Socket Layer (SSL). Vallivaara et
al. [6] introduced an approach for detecting MiTM attacks
using timestamps in the TCP header of network packets.
While some of these existing approaches offer promising
solutions to mitigate MiTM attacks, their effectiveness against
sophisticated attacks and adaptability to IoT device diversity
remain uncertain. To address these challenges, we propose IoT-
MGSec, a novel approach for mitigating MiTM attacks in IoT
environments using graph-based learning.

Graphs offer a promising approach to modeling network
data, as most real-world data can be naturally represented as
graphs that capture complex relationships between components
across networks. Graph-based learning facilitates the extrac-
tion of meaningful representations of network components
and in understanding intricate graph features. The extracted
representation can then be effectively used in downstream
application tasks such as predicting interactions within the
graph components, such as classifying nodes contained in the
graph or predicting edge relationships (also known as link
prediction). This approach has been shown to provide effective
results in various domains, including health informatics, rec-
ommender systems, among many others [7], [8]. Graph-based
learning can be leveraged to provide a comprehensive map of
complex network interactions that exist between IoT devices.
This allows for enhanced detection of network intrusions
and anomalous network instances, significantly improving the
detection accuracy of detecting MiTM attacks in an ever-
evolving landscape of IoT networks.

In this paper, we leverage semantic relationships from
edges and nodes contained in a graph to develop a robust
classifier that can detect MiTM attacks with high precision and
accuracy. In this approach, interactions across the network are
represented as a homogeneous graph where connections are
depicted as edge relationships and nodes represent network
components. This network graph is then converted into an em-
bedding space representation using a homogeneous embedding
approach such as node2vec. This embedding space preserves
the graph semantics such that nodes that appear close to each



other are also represented similarly to the embedding space.
The node embedding is used as an input feature to develop
a classifier that distinguishes edge connections across the
network as malicious or benign. We validate the feasibility of
our approach using a dataset that consists of known IoT-based
MiTM attacks. Additionally, we compare IoT-MGSec against
a baseline model, demonstrating its superiority in accurately
classifying malicious instances of MiTM attacks. By doing so,
we aim to provide a real-time MiTM detection and mitigation
system that enhances the security posture of IoT networks. Our
approach addresses the challenges posed by the heterogeneity
of IoT devices and their connections, offering an innovative
solution for detecting and thwarting evolving MiTM attacks
in the dynamic landscape of IoT environments.

The rest of the paper is organized as follows: Section II
provides the background and preliminaries of graph embed-
dings, Section III outlines the threat model and system archi-
tecture, Section IV provides the methodology of loT-MGSec,
Section V presents the experimental results and analysis,
Section VI presents a comprehensive review of related work,
and Section VII concludes the paper with future research
directions.

II. GRAPH EMBEDDINGS

Graphs are a fundamental data structure for representing
complex relationships and interactions. Graph embeddings
have proven to be a versatile tool in various domains, fa-
cilitating the transformation of graph-structured data into
low-dimensional vector representations. The process involves
encoding graph properties, where nodes represent entities
(vertices), and edges signify relationships between them, into
dense and continuous numerical formats [9]. This format pre-
serves the graph’s inherent structure and semantic information,
enabling efficient computation of graph algorithms and down-
stream tasks such as visualization, node classification, link
prediction, and graph-level comparison [10], [11]. In the IoT
environment, graph embeddings offer a promising approach to
address some security challenges, including MiTM, by repre-
senting the IoT network as a property graph, where IoT de-
vices are nodes, and communication channels between devices
are edges. The embeddings capture the network’s structural
relationships and interactions, allowing for valuable insights
to be gleaned for detecting and preventing anomalous events
that may indicate attack attempts. One significant advantage
of graph embeddings is their ability to capture the graph’s
topology and vertex-to-vertex relationships. Devices exhibiting
similar communication patterns or common neighbors in the
IoT network are likely to have identical representations in
the embedding space. This property facilitates the detection
of suspicious patterns that deviate from the learned normal
behavior, signaling potential security threats.

Various graphs can model different aspects of the IoT
network, including communication graphs representing the
communication patterns between IoT devices and topology
graphs capturing devices’ physical connections and arrange-
ments. Also, behavior graphs model the similarities in behavior

between devices, while temporal graphs incorporate time-
series data to analyze changes over different time steps.
Inputs to these graphs differ depending on the scenarios and
may include device metadata, communication logs, sensor
readings, and network traffic data. The potential output of
graph embedding is a low-dimensional vector representing a
part of the graph (or a whole graph) that can inform various
security-related tasks [12]. Graph embeddings leverage multi-
ple techniques to learn meaningful representations, including
Node2Vec, graph convolutional network (GCN), and matrix
factorization-based methods.

A. Preliminaries

Given a graph with nodes representing entities and edges
denoting relationships between them, the goal is to map each
node to a continuous vector in a lower-dimensional space.
Mathematically, a graph can be defined as G = (V,E),
where V' is the set of nodes and FE is the set of edges.
The objective is to learn a function ¢ : V — RY, where
¢(v) represents the embedding of node v, and d is the
desired dimensionality of the embeddings. The function phi
captures the graph’s topology and preserves node similarities
and relationships. Each edge e;; in the edge set I describes the
connection between two different nodes v; and v;, represented
as e;; = (v;,v;), where v;,v; € V, and nodes v; and v; are
adjacent nodes.
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Fig. 1. An Example of a Graph Embedding Approach.

Graphs can be classified into various categories based
on edge properties, including directed or undirected graphs,
homogeneous or heterogeneous graphs, and weighted or bi-
nary graphs. Graph embedding techniques leverage different
strategies to generate embeddings that effectively capture the
graph’s diverse structural patterns. The choice of the embed-
ding method depends on the characteristics of the graph and
the specific objectives of the analysis. For our graph embed-
ding approach, we utilize a homogeneous graph embedding
technique, such as Node2Vec.

B. Node2vec

Node2Vec is a graph embedding technique that applies the
principles of word2vec to the graph domain to generate low-
dimensional vector representations (embeddings) for nodes in
large-scale graphs. The approach captures local and global



structural patterns, making it valuable for various graph repre-
sentation learning tasks. Node2Vec generates multiple random
walks on a graph that are sequences of nodes obtained by
traversing the graph from a starting node in a stochastic man-
ner [13]. Node2Vec utilizes biased random walks that balance
breadth-first (BFS) and depth-first (DFS) graph searches [9].
This balance is achieved through the return parameter (p)
and the in-out parameter (q), which control the likelihood
of revisiting nodes during a random walk and the probability
of moving towards nodes that are further away or within the
local neighborhood, respectively. By appropriately tuning p
and ¢ parameters, Node2Vec captures higher-order proximity
between nodes, preserving community structure and structural
equivalence. Higher-order proximity is the ability to gather
structural information beyond nearby nodes, while community
structure refers to densely connected nodes within the same
community. The embeddings generated by Node2Vec accu-
rately encode meaningful similarities between nodes, making
them well-suited for tasks like node classification and link pre-
diction. The flexibility, scalability, and representation learning
capabilities of Node2Vec make it a valuable tool for analyzing
IoT networks and addressing security challenges.

III. IOT-MGSEC FRAMEWORK

In this section, we provide a high-level overview of the IoT-
MGSec framework. We describe its threat landscape and its
conceptual system architecture for detecting attacks.

A. Threat Model

Our network topology consists of multiple devices that are
connected through a few or more critical network gateways.
These gateways are essential to routing data traffic across the
network and ensuring data delivery to appropriate devices.
We define MiTM threats as attacks involving data injection
or interception of data packets over a shared network. These
attacks involve network packets that have been intercepted
or rerouted from their destination to a malicious network.
We assume that attacks performed on devices are conducted
to a remote or local network while using attack measures
such as address resolution protocol (ARP) spoofing, SSL
stripping, and eavesdropping. This process implies that the
attacker can steal, alter, or simply monitor data, breaching the
confidentiality and integrity of a device or the entire network.

B. System Architecture

IoT-MGSec consists of four main components:

o The Data processing phase involves curating and pro-
cessing network datasets that contain malicious and
normal network traffic information. Processing involves
removing null values, deleting redundant data, and con-
verting data to an appropriate format.

e In the Graph generation phase, the processed dataset
is converted into a homogeneous graph of device in-
teractions where nodes represent the device types and
edges represent the device connections. For a graph
G = (V,E), an edge is generated for each node V

such that if devices v; and vy are connected, an edge
€19 = (1}1,’[}2) is formed.

o Graph embeddings phase involves converting homo-
geneous network graphs into an appropriate embedding
space using node2vec graph embedding techniques.

o The Classification phase involves using the generated
graph embeddings and machine learning classifiers to
develop models that classify nodes or edges contained
in the graph as either malicious or benign. This might
be done at the node level (node classification) or at the
network level (edge classification).

Figure 2 shows a visual representation of the system ap-
proach. Data is generated from device interactions across
the network. This data is then processed to ensure it is in
an appropriate format. Once the data has been processed,
it is represented as a graph that encapsulates all network
interactions. The graph is used to generate embeddings that
capture the semantic relationship between nodes and edges.
These embeddings are fed into a classifier, resulting in a model
that distinguishes between malicious and benign data. Next,
we provide details of the implementation of our approach.
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Fig. 2. IoT-MGSec System Architecture.

IV. IMPLEMENTATION

In this section, we provide details of the [oT-MGSec frame-
work implementation. Subsequent subsections will discuss the
components in detail.

A. Model Implementation

1) Data Acquisition: Choosing a robust dataset is crucial
to validating our approach’s effectiveness. For our imple-
mentation, we use the IoT Network Intrusion Dataset [14],
which consists of network attacks on IoT devices. This dataset
consists of 42 packet capture (pcap) network files, with each
file containing thousands of normal and malicious network
interactions. Each pcap file contains a specific attack type, such
as man in the middle, denial of service, and Mirai botnets. Out
of these attack types, we focused on the MiTM attacks, which
consist of 6 of the 42 files in the dataset. After converting



the pcap files into csv as well as identifying malicious and
normal packets, the dataset was imported into the pandas
dataframe for more seamless data manipulation. For the data
processing step, we began by labeling malicious and normal
packets. Next, we encoded all of the categorical string values,
such as protocol information, MAC, source, and destination IP
address, into a numerical representation, as this is required by
the classifiers when developing our classification models. After
data processing, the feature set consists of Packet Number
(when data was sent), Protocol Number, Frame Length (packet
size), Malicious flag, Encoded source, and destination.

2) Graph Construction: We use NetworkX [15], an open-
source graph library for studying and manipulating complex
network graphs, to convert our processed data into a homo-
geneous graph. Each node consists of source and destination
information, and each edge is labeled as either malicious or
benign. Additionally, We divide our network dataset into six
distinct subgraphs, allowing for more granular analysis of
the network’s dynamics and interactions across entities con-
tained in the network. By segmenting the dataset into smaller
subgraphs, we can isolate and pinpoint specific patterns that
may be lost in a larger graph. Furthermore, working with
multiple subgraphs enhances the computational efficiency of
our approach, making data processing faster. This process
not only facilitates a fine-grained analysis of the network
interactions but also promotes a robust and efficient system.

3) Graph Embedding: To generate more meaningful repre-
sentations of the network graph structure, we use node2vec
to generate embeddings that capture the semantics of the
graph. This simple and effective approach has been shown to
work well for homogeneous graphs [16], [17]. We implement
node2vec using stellargraph [18], a library for developing
graph machine-learning algorithms. Table IV-A3 provides de-
tails of the parameters used in our node2vec implementation.

Parameter Value
P 4q 11
Random walk length 80
Window size 10
Number of walks 10
Vector size 128

TABLE T
PARAMETERS USED FOR THE NODE2VEC IMPLEMENTATION.

B. Predicting MiTM attacks using node connections

The main goal of generating embeddings is to develop
a robust classifier for detecting MiTM attacks. Algorithm 1
provides details of the prediction approach. The node2vec
approach produces embeddings that offer representations for
individual nodes across the graph. To obtain edge embeddings,
we explored several techniques, using different operators to
merge pairs of node embeddings into a single embedding. For
a graph G = (V, E), suppose e;; = (v;, v;) represents an edge.
We define a function ¢ : V — R?, which represents the map-
ping of nodes to an embedding space. The edge embedding,
M, can be defined using the source node embedding ¢(v;)
and the destination node embedding ¢(v;). For example, one

method can involve computing the product of v; and v;, i.e.,
(M;; = (¢(v;) X $(v;)). We evaluated four distance operators:

v;))
o Mij = (o(vi) — p(v5))?

We evaluated each operator on every graph, selecting the
best-performing result for each graph for its correspond-
ing classifier. Overall, the best performing operators were
|p(vi) — ¢(vj)| and (¢(v;) — é(v;))?. Figure 3 provides a
visual description of the edge embeddings for each graph using
principal component analysis (PCA) dimensionality reduction.
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Fig. 3. A visualization of edge embeddings for each graph using Principal
Component Analysis (PCA). The red and blue dots represent malicious and
normal edge embedding, respectively.

Algorithm 1 MiTM Attack Prediction Using Edge Embed-
dings
Require: Graph G = (V, E) where V = {v1, v3, ..
E = {e1,e3,...,en} such that e;; = (v;,v;).
1: Initialize node embeddings using the node2vec algorithm:
N < Node2Vec(G)
Initialize an empty list for edge embeddings: M <+ ||
for each edge e;; = (v;,v;) € E do
Compute edge embedding m;; = |N; — Nj|
Append m;; to M
end for
Partition X and Y into training and testing sets
Train a classifier using Logistic Regression on the training
set
9: Evaluate classifier performance on the test set

.,Up} and

A o

Algorithm 1 utilizes node2vec to obtain node embeddings,
capturing the structural patterns and relationships of individual
nodes. The algorithm captures semantic relationships between
edge connections by computing edge embeddings using the ab-
solute difference between connected node embeddings. Given
a graph G = (V| E) as input, the algorithm outputs a classifier
capable of predicting potential MiTM attacks based on edge



Graph Number Baseline TIoT-MGSec
Fl-score [ Precision | Recall [ Accuracy |[[ Fl-score [ Precision | Recall [ Accuracy
1 0.85 0.89 0.84 0.85 0.95 0.96 0.95 0.95
2 0.62 0.63 0.62 0.65 0.94 0.95 0.94 0.94
3 0.76 0.77 0.76 0.77 0.99 0.99 0.99 0.99
4 0.51 0.85 0.56 0.71 0.79 0.86 0.80 0.80
5 0.60 0.83 0.62 0.62 0.90 0.90 0.90 0.90
6 0.57 0.83 0.57 0.78 0.55 0.67 0.60 0.60
ABLE II

PRECISION, RECALL, F1-SCORES AND ACCURACY FOR EACH GRAPH

embeddings. In the algorithm, node2vec initializes the node
embeddings in line 1, and an empty list for edge embeddings is
initialized in line 2. The edge embeddings are computed as the
absolute difference between the embeddings of the two nodes
connected by the edge and are appended to the list of edge
embeddings in lines 4 and 5. Line 7 involves splitting the edge
embeddings into training and test sets using the EdgeSplitter
class in StellarGraph. In addition, the data is split into a feature
set (X) and output labels (y) for both the test and training sets.
The output labels are derived from the labels of the edges as
defined in the graph. The processed edge embeddings serve
as input features to the binary classifier in line 8. For this
classifier, we choose to use Logistic Regression due to its
simplicity and efficiency in binary classification tasks.

V. EVALUATION AND ANALYSIS
A. Evaluation metrics

We evaluate the feasibility of IoT-MGSec using standard
machine learning evaluation metrics such as precision, recall,
and F-1 score. Precision defines the number of true malicious
traffic out of all the malicious traffic detected by the classifiers.

e 3 . fad _ True Positive
ThlS is defined as: Precision = True Positive-+ False Positive” Recall
is defined as the number of malicious instances detected out
of the entire malicious traffic present, which is characterized

: . _ True Positive .
using: Reca.ll = True Positive + False Negaiive F-1 score is deﬁneq as
the harmonic mean of the precision and recall characterized

. _ Precision X Recall
by' Fl =2 x Precision+Recall *
B. Result

In this section, we provide an evaluation of the performance
of IoT-MGSec. We compare the performance of our approach
to a baseline model. Table II provides a description of the
results for the baseline and IoT-MGSec.

1) Baseline: In our baseline evaluation, we employed a
logistic regression model with feature engineering without
using edge embeddings as specified in IoT-MGSec. This
approach was applied using all six graphs. The results were
promising, with Graph 1 having the highest precision, recall,
and F-1 scores of 0.85, 0.89, and 0.84, respectively. Graph 4
recorded the lowest F-1 score at 0.51.

2) IoT-MGSec Approach: We evaluate our approach using
the evaluation metrics. The results reveal notable improve-
ments compared to our baseline model. Some graphs achieved
a precision, recall, and F-1 score exceeding 0.90. Graph 3
outperformed other graphs with precision, recall, and an F-1
score of 0.99. The results are promising and underscore the

notion that incorporating graph-based learning into intrusion
detection systems provides enhanced detection of MiTM at-
tacks with higher accuracy.

VI. RELATED WORK

This section discusses related work in graph-based intrusion
detection and their applications in IoT security. We categorize
the approaches based on their primary focus.

A. Graph-based loT Botnet Detection

Several methods have been proposed in the literature that
address the use of graph-based learning techniques for in-
trusion detection. Nguyen et al. [19] proposed a lightweight
approach for detecting IoT botnets by extracting high-level
features from functional-call graphs known as PSI-Graph. The
results show that the approach can detect these attacks with
high accuracy. Pahl et al. [20] proposed a graph-based access
control micro-service approach for IoT security. This approach
runs as a microservice on each IoT device by intercepting
and firewalling inter-service communication represented as a
graph. This graph is used to classify inter-service commu-
nication traffic as normal or anomalous based on a defined
communication model for each microservice.

B. Graph-based Anomaly Detection

Alasmary et al. [21] proposed an approach to detect malware
in an IoT network using control flow graphs. This approach
utilizes various characterizing features of the control flow
graph to build a deep learning-based classifier that detects
malware intrusions with high accuracy. Sanz et al. [22] pro-
posed GRAFFITO-IDS, a graph-based approach to detecting
network intrusions. This approach infers information from a
graph using a time-windowed snapshot of the input network
traffic. They evaluated their approach using three classification
models, and the results indicate that their approach improves
threat detection accuracy from the baseline. Parveen et al. [23]
proposed a graph-based anomaly detection approach for de-
tecting malicious insider threat intrusions using ensemble-
based stream mining. The authors compared the approach for
supervised and unsupervised learning and discovered that the
supervised learning approach performs best.

C. Graph Embedding for loT Security

While various graph-based intrusion detection approaches
have been proposed, limited methods exist to address the
challenge of learning meaningful embeddings for nodes in



large-scale graphs in the context of IoT. Paudel et al. [24]
proposed a graph-based outlier detection in the IoT (GODIT),
an approach that detects denial of service attacks using real-
time graph network traffic. Their approach utilizes a shingling-
based graph sketching model for graph embedding gener-
ation. Nwafor et al. [25] introduced a provenance graph-
based approach for detecting anomalies in network sensor
data utilizing cosine similarity to compare graph structures.
Abusnaina et al. [26] proposed an approach for adversarial
learning attacks on graph-based IoT malware detection sys-
tems using a combination of control flow graphs and deep
learning. Their approach employs two different methods: off-
the-shelf adversarial learning algorithms and graph embedding
and augmentation. Manzoor et al. [27] proposed Streamspot,
an efficient approach for detecting anomalous instances in
streaming heterogeneous graphs using clustering. Graphs are
represented as sketch vectors and are compared based on the
relative frequency of their local substructures using a similarity
function.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose IoT-MGSec, a graph-based learn-
ing approach for detecting MiTM attacks. Our IoT-MGSec
transforms network data into graphs, encapsulating intricate
interactions within the network. These network graphs are
subsequently translated into graph embeddings that capture
the semantics of graph interactions across the network. We
evaluate the feasibility of our approach by comparing the
detection accuracy of our approach to a baseline model.
The results are promising, with IoT-MGSec detecting MiTM
attacks with high accuracy. In future work, we plan to em-
ploy the use of advanced graph learning models such as
Graph Convolution Networks and GraphSAGE. These models
eliminate the need for feature engineering, streamlining the
representation learning process.
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