
Evaluating Large Language Models for Enhanced
Intrusion Detection in Internet of Things Networks

Ebelechukwu Nwafor∗, Ujjwal Baskota∗, Md Salik Parwez†, Jeremy Blackstone‡, Habeeb Olufowobi†
∗Department of Computing Sciences, Villanova University, PA, USA

†Department of Computer Science & Engineering, University of Texas at Arlington, TX, USA
‡Department of Electrical Engineering & Computer Science, Howard University, Washington, D.C, USA

Email: enwafor@villanova.edu

Abstract—The Internet of Things (IoT) landscape has grown
exponentially in recent years, making robust and efficient in-
trusion detection systems (IDS) even more critical. While Large
Language Models (LLMs) have gained significant traction, their
effectiveness in network intrusion detection remains largely
unexplored. This paper proposes an LLM-based framework for
enhanced threat detection and analysis in IoT networks. We
explore using advanced LLMs like OpenAI’s Generative Pre-
trained Transformer (GPT) model, focusing on techniques such as
fine-tuning and embedding similarity. Using real-world intrusion
datasets, we evaluate the proposed LLM’s performance in detect-
ing common network attacks and compare it with ensemble-based
IDS solutions. We assess the efficiency of the LLM in binary class
and multiclass classification task using standard metrics, such as
accuracy, recall, precision, and F1 scores. While the fine-tuning
approach does not produce comparable results to the current
baseline ensemble-based IDS models, the embedding approach,
however, yields comparable results. This analysis represents a
starting point for exploring the utilization of advanced large
language models for intrusion detection within an IoT ecosystem.

Index Terms—GPT, IoT, Intrusion detection, Large Language
Model

I. INTRODUCTION

The Internet of Things (IoT) has revolutionized our lives,
connecting everyday objects and creating a vast network of
heterogeneous devices. This proliferation, while beneficial, has
introduced significant security vulnerabilities, especially with
the evolving threat landscape of zero-day attacks. IoT devices
often lack robust security measures, making them prime targets
for cyber attacks. Prior research has investigated intrusion
detection systems (IDS) specifically for sensor networks [1]
and mobile computing systems [2], but current IDS struggle
to keep pace with these rapidly changing threats. The growing
number of heterogeneous devices within the IoT ecosystem
creates significant challenges for adaptation. Effective IDS
are more critical than ever as these devices are increasingly
integrated into essential sectors like healthcare, smart homes,
and industrial control systems.

Large Language Models (LLMs) such as GPT-4 [3] are
the state-of-the-art for natural language processing (NLP).
These powerful models excel at complex tasks such as senti-
ment analysis [4], sentence summarization [5], and machine
translation [6] by utilizing complex neural networks with
large parameters. Their ability to learn intricate patterns from
vast amounts of data suggests a potential application beyond

traditional language tasks – intrusion detection in IoT environ-
ments. Therefore, to address the limitations of the current IDS
and enhance real-time intrusion detection in IoT networks, we
explore the potential of these LLMs.

In this paper, we propose a novel approach that leverages
the predictive capabilities of LLMs for real-time intrusion
detection in IoT networks. We hypothesize that by fine-tuning
LLMs on IoT network traffic data, these models can detect and
identify sophisticated cyber threats, such as advanced persis-
tent threats (APTs). The proposed approach aims to address
the limitations of existing IDS methodologies, providing a
more adaptable and efficient real-time security solution for
the ever-evolving IoT networks.

The contributions of this paper are as follows:
• Evaluate LLM Effectiveness for IoT Intrusion Detec-

tion: We assess LLMs’ ability to detect network intru-
sions specifically within IoT environments. This includes
evaluating their proficiency in identifying threats using
real-world IoT network traffic data.

• Investigate LLM Adaptability in Dynamic IoT Net-
works: We investigate how fine-tuning and embedding
similarity of LLMs on IoT network traffic data allows
them to adapt to IoT networks’ unique and dynamic
nature, including examining their ability to handle un-
expected variations in network traffic data.

• Comparative Analysis with Existing IDS Solutions:
We compare the performance of the proposed LLM-based
IDS with current ensemble-based IDS solutions using
standard metrics (accuracy, precision, recall, F1-score).
This evaluation aims to assess LLMs’ potential to revo-
lutionize real-time intrusion detection in IoT networks.

II. RELATED WORK

LLMs have emerged as a promising approach for cyber in-
trusion detection. Li et al. [7] and Ferrag et al. [8] demonstrate
the potential of LLMs in identifying anomalies and threats.
However, their application in IoT intrusion detection remains
largely unexplored.

Almodovar et al. [9] propose LogFiT, a model that utilize
BERT [10] to detect anomalies in the system logs. Nguyen
et al. [11] proposed a domain specific Network Intrusion
Detection System (NIDS) using BERT on dataset from three
different domains. They treated a network flow as a word and



a sequence of flows as a sentence. These studies highlight
the effectiveness of LLMs in anomaly detection tasks. Ehsan
et. al. [12] address the need for LLMs in cybersecurity by
proposing SecureBERT, a fine-tuned model trained on a large
cybersecurity dataset. This work emphasizes the ability of
LLMs to understand and automate cybersecurity tasks.

While n-gram based approaches [13], [14] and machine
learning methods [15] have been successful in intrusion de-
tection, they may not effectively capture the intricate patterns
present in IoT network traffic data.

III. BACKGROUND

This section provides key concepts essential to understand-
ing our research on intrusion detection in IoT networks.

Large Language Models (LLMs): LLMs are advanced AI
models trained on massive amount of data to understand,
generate, and process complex natural language task [16].
These models excel in a variety of NLP tasks, such as machine
translation, sentence completion, text summarization, and en-
hancing the capabilities of search engines to process extensive
data efficiently. They have been shown to produce human-level
performance on standardized academic benchmarks, including
passing the medical and bar exam at the top percentile [17].
These models are developed using large amounts of data
that are processed on AI algorithms such as deep learning
transformer models and are further trained using reinforcement
learning with human feedback (RLHF) [18]. This approach
provides the models the ability to predict subsequent words
in a sentence with a level of precision and understanding that
closely mimics the human cognitive process.

There are various implementations of LLMs, such as GPT-
4, and LLaMA-2 [19], which illustrates the diversity in this
field. Although these models share a common foundational
approach, they differ in their development and application.
This diversity not only outlines the versatility of LLMs in
handling complex language tasks but also highlights the rapid
evolution and potential of AI in mimicking and enhancing
human language capabilities. Their ability to analyze data and
identify patterns makes them suitable for analyzing network
traffic data in search of potential security threats.

Embedding: An embedding is a technique that maps a diverse
set of inputs into a compact vector representation, typically
with fewer dimensions than the original input. This approach
ensures that similar data are closely aligned in the vector space.
In simpler terms, an embedding acts like a digital fingerprint,
allowing for efficient comparison of data points. Formally,
we define an embedding as a function that maps each input
feature (a word, sentence, or network traffic data) to a lower-
dimensional vector representation. This lower-dimensional
space allows for efficient storage and comparison of the data.
Mathematically, given a set of inputs X = {x1, x2, ..., xm}
where each xi represent input feature, an embedding can
be defined as a function f : X → Rn that maps each
input feature xi to an n-dimensional vector representation ei
defined as: ei = f(xi), where ei is the n-dimensional vector

representation (embedding) of xi, and n is the dimension of
the embedding space less than dimension of original data space
m. In IoT networks, embeddings can be used to transform
network traffic data into unique vector representations. These
representations can then be compared against a database of
known attack signatures for faster and more accurate threat
identification.

IV. THREAT MODEL

We assume an attacker with moderate to high technical
skills targeting an IoT network, aiming to gain unauthorized
access, disrupt operations, or exfiltrate sensitive data. The
attacker may exploit unpatched vulnerabilities in IoT devices
or communication protocols to launch various attacks. These
attacks may include:

• Denial of Service (DoS) attack is conducted by flooding
the network with bogus, traffic overwhelming devices and
disrupting legitimate communication.

• Brute Force attack is the process of correctly guessing
the login credentials of an IoT system through multiple
trial-and-errors methods to gain unauthorized access to
devices.

• Spoofing is the processing of disguising a communication
details such as IP address from a illegitimate source as
legitimate with the goal of obtaining an unauthorized
access to devices or network.

• Mirai attacks are a specialized form of IoT attack that are
carried out using a Mirai malware. Once an IoT device
has been infected by the malware, it can be remotely
controlled and used as bot in a Distributed Denial of
Service (DDoS) attack.

• Reconnaissance attacks consist of a group of network
surveillance techniques, including ping sweeps, operating
system identification, vulnerability scanning, port scans,
and host discovery on IoT devices within a network.
The primary objective of these activities is to gather
valuable network data that can be leveraged for potential
exploitation.

V. SYSTEM DESIGN

In this section, we present a comprehensive overview of
our system design. We explore two principal approaches for
LLM intrusion detection within an IoT ecosystem: Fine-tuning
LLMs and Embedding Similarity. Figures 1 and 2 illustrates
the workflow of our proposed approach. We provide detailed
descriptions of each approach in Sections V-B and V-C.

A. Data Processing

We utilize the CIC-IoT-2023 [20], an open-source dataset
from the Canadian Institute for Cybersecurity. This dataset
was created by generating realistic attacks on a range of
IoT systems with a total of 150 IoT devices employed both
as attackers and targets. The dataset was collected from 33
different attacks divided into 7 classes. We further process
our dataset using the following feature engineering approach.
This step involved collating each 34 intrusion labels into 7

2



Fig. 1: LLM Fine-tuning System Approach Fig. 2: Embedding Similarity System Approach

types defined in Table I. For example, ARP spoofing and
DNS spoofing, both types of spoofing based intrusions, are
combined under the label “spoofing”. Table I provides an
overview of the malicious and benign classes contained in our
dataset. Our dataset consists of a large number of features,
which can impede the performance of our model causing it to
overfit. Feature importance involves ranking the input features
in a dataset by its relevance. We employ random forest feature
importance technique [21], to select the top 10 features used
as input parameters for our fine-tuned LLM. Table II and
Figure 3 provide descriptions and rankings of the selected
features respectively.

Dataset Number of Messages
DoS 215053
Mirai 13435
BenignTraffic 5600
Spoofing 2539
Recon 1860
Brute Force 63

TABLE I: Number of messages by type

Feature Description
IAT Time difference with previous packet
Min Minimum packet length in the flow
Max Minimum packet length in the flow
Magnitue Square root of sum of average incoming and outgoing

packets
Tot Sum Sum of packet lengths in a flow
AVG Average packet length in the flow
RST
Count

Number of packets with RST flag set in the same flow

URG
Count

Number of packets with URG flag set in the same flow

Header
Length

Length of the Headaer

TABLE II: A description of the top ten features

B. Fine-Tuning Approach

Fine-tuning LLMs involves training a base LLM model on
domain-specific dataset to enhance performance on specific
tasks. This process enables the model to learn patterns unique
to that dataset and provide more tailored domain knowledge.
Algorithm 1 details our fine-tuning process. The algorithm

Fig. 3: Top ten features with their relevance scores

Algorithm 1 Fine-tuning and Evaluating LLM with Network
Features an Train and Test prompts

1: Input: Network features Fnetwork = {f1, f2, . . . , fn}, Training
Prompt Ptrain, Test Prompt Ptest, and ground truth label Lg =
{l1, l2, . . . , ln}

2: Output: Evaluation metrics Mevaluation = {m1,m2, . . . ,mn}
3: Load base Large Language Model L

▷ Fine-tuning LLM
4: for each feature set f in Fnetwork do
5: Update L parameters using f and Ptrain
6: end for

▷ Evaluating Fine-tuned LLM
7: Mevaluation ← {}
8: for each incoming or current feature set f in Fnetwork do
9: lp ← Generate LLM output using f and Ptest

10: mf ← Compare output label lp with ground truth label lg
11: Update Mevaluation by appending mf

12: end for
13: return Mevaluation

takes network features, ground truth labels (correct classifi-
cations), and a training prompt as input. The prompt is an
important component that guides the model on specific tasks
to perform given the input data. In Line 3, we load the base
LLM and in Line 4 we update the base LLM given the training
prompt which serves as our fine-tuned model. In line 7-11, we
evaluate our fine-tuned LLM by comparing the ground truth
label lg with the predicted labels lp generated by the fine-
tuned models in line 9. Our evaluation metric Mevaluation is
updated and returned in line 13. This metric is used to gauge
the performance of our fine-tuned model. Our framework is

3



robustly designed to integrate various LLMs, however, for
our implementation, we utilize OpenAI’s GPT-3.5 base model
coupled with a training prompt to generate a fine-tuned model.

Use Prompt

Training A network connection in which the time difference
with the previous packet was [IAT], minimum
packet length in the flow was [MIN], maximum
packet length in the flow was [MAX], magnitude
was [MAGNITUDE], sum of packet lengths in
the flow was [TOT SUM], average packet length
in the flow was [AVG], packet’s length was
[TOT SIZE], number of packets with RST flag
set in the same flow was [RST COUNT], number
of packets with URG flag set in the same flow
was [URG COUNT], and the header length was
[HEADER LENGTH], was a [ATTACK TYPE]
attack.”

Testing What is the type of network connection in which
the time difference with the previous packet was
[IAT], minimum packet length in the flow was
[MIN], maximum packet length in the flow was
[MAX], magnitude was [MAGNITUDE], sum of
packet lengths in the flow was [TOT SUM], aver-
age packet length in the flow was [AVG], packet’s
length was [TOT SIZE], number of packets with
RST flag set in the same flow was [RST COUNT],
number of packets with URG flag set in the same
flow was [URG COUNT], and the header length
was [HEADER LENGTH] ? Is the connection
type malicious or non-malicious?

TABLE III: Prompts used for training and testing.

C. Embedding Approach

In addition to fine-tuning a base LLM, we employ an em-
bedding similarity technique to assess the similarities between
network traffic embeddings, thereby identifying deviations
that might indicate anomalous network activity. This pro-
cess involves recording labeled network embeddings, which
provides network scenarios, including both malicious and
benign instances. Network traffic is converted into embeddings
using a specified LLM embedding function (in our case,
OpenAI’s GPT-3.5 model) which serves as a basis of our
network embedding repository, stored within a vector database
for subsequent analysis. For our embedding generation, we
utilize network features as defined in section V-A as input
to our embedding generation function. This function utilizes
OpenAI’s embedding API to convert network features into
embeddings and produces a set of vectors with a fixed dimen-
sion size. To store network embeddings, we utilize faiss [22],
an open-source search similarity vector database. Incoming
network traffic is evaluated by generating its corresponding
embedding and checking if there are any similar embedding
stored in our vector database. This comparison allows us
to determine if an incoming traffic closely resembles any
of the stored embeddings. For this comparison, we employ
similarity metrics such as Euclidean distance which measures

the distance between two vectors P = {p1, p2 . . . pn} and
Q = {q1, q2 . . . qn} using the formula:

d(P,Q) =
√

(p1 − q1)2 + (p2 − q2)2 + · · ·+ (pn − qn)2

A score closer to zero indicates a high similarity to an
existing malicious or benign stored embedding instance which
leads to a classification of an incoming network signal. The
objective of this method is to offer a lightweight approach to
network traffic classification, relying on similarity metrics. To
enhance the precision of our classifier, we define a threshold
for our similarity metric. If the most similar embedding among
the stored network embeddings is benign and falls below this
threshold, it indicates that the closest match in our database
is not sufficiently similar, suggesting that the incoming em-
bedding does not belong to the presumed benign category.
Consequently, the incoming network traffic is classified as
belonging to the malicious category for further analysis. We
apply a threshold of 5% which indicates that an embedding
of an incoming network traffic must be 95% similar to a
stored benign network embedding to be classified as benign.
A detailed explanation of our embedding methodology can be
found in Algorithm 2. The initialization of the vector database
occurs in line 3, where each network embedding representing
network interactions, denoted as Etrain is stored. From lines 6-
12, the procedure involves comparing each new incoming net-
work embedding with those previously stored in database V .
This comparison also utilizes a predefined threshold to assess
the similarity between the stored and incoming embeddings.
Finally, evaluation metrics are produced in line 14.

Algorithm 2 Evaluate embeddings based on similarity thresh-
old

1: Input: Training set embeddings Etrain, Test set embed-
dings Etest, Ground truth labels Lground, Similarity thresh-
old τ

2: Output: , Accuracy A, Precision P , Recall R, F1-score
F1

3: Initialize a Vector database V with a dimension of Etrain
4: Add Etrain to V
5: Initialize empty list Lpred for predicted labels
6: for each embedding e in Etest do
7: D, i← Search in V for the nearest neighbor of e
8: if D < τ and Lground[i] = 1 then
9: Append 1 to Lpred

▷ Embedding is considered non-malicious
10: else
11: Append 0 to Lpred

▷ Embedding is considered malicious or flagged
12: end if
13: end for
14: A,P,R, F1 ← Calculate accuracy, precision, recall, and

F1-score between Lground and Lpred
15: return A,P,R, F1

4



TABLE IV: Performance Metrics for both LLM model and ML model trained with numerical data
Training Data Class Type Accuracy Precision Recall F1 Score

Balanced Data (200 Network Traffic)
GPT-Binary Class 0.490 0.372 0.490 0.337
GPT-Multi Class 0.130 0.192 0.234 0.203

Imbalanced Data (200 Network Traffic) GPT-Binary Class 0.230 0.210 0.230 0.216
Balanced Data (4000 Network Traffic ) GPT-Binary Class 0.015 0.007 0.500 0.148

Imblanced Data (4773 Network Traffic)
GPT-Binary Class 0.015 0.007 0.500 0.014
Gradient Boosting 0.994 0.994 0.994 0.994

Random Forest 0.994 0.993 0.994 0.993
Embedding Similarity 0.976 0.976 1.000 0.988

VI. EVALUATION

A. Evaluation Metrics

We evaluate the feasibility of both the fine-tuning and
embedding similarity approach using evaluation metrics such
as precision, recall, and F-1 score. Precision defines the
number of true malicious traffic out of all the malicious traffic
detected by the classifiers. This is defined as: Precision =

True Positive
True Positive+False Positive . Recall is defined as the number of
malicious instances detected out of the entire malicious
traffic present, which is characterized using: Recall =

True Positive
True Positive+False Negative . F-1 score is defined as the harmonic
mean of the precision and recall: F1 = 2× Precision×Recall

Precision+Recall .

B. Fine-tuning using OpenAI’s GPT-3.5

Our goal is to compare the performance of the fine-tunned
LLM across various scenarios, including balanced and im-
balanced class distributions, as well as using numeric and
categorical data. Our dataset consists of numeric data repre-
senting various network features. To evaluate the performance
of the fine-tuned model, we evaluate the performance of the
fine-tuned LLMs in both binary and multi-class classification
tasks. The transformation of numerical data into categorical
values involves grouping the numerical values into prede-
fined categories such as ‘low’, ‘medium’, and ‘high’. This
categorization helps in assessing the model’s performance
across different levels of data intensity. To further facilitate
our model’s understanding of the network features, we convert
each row of data into a descriptive sentence where each of the
features corresponds to a feature name as outlined in table
III. Below we provide further details on the diverse evaluation
scenarios employed to test the performance of our fine-tunned
LLM.

1) Balanced and Imbalanced Datasets: To evaluate the
model’s performance across balanced and imbalanced datasets,
we randomly selected samples from all seven classes. For
enhancing the representation of minority classes, we employed
the Synthetic Minority Oversampling Technique (SMOTE)
[23]. In the balanced dataset, each class is equally represented,
ensuring uniform sample sizes across all classes. Conversely,
the proportion of the imbalanced data across classes from the
original dataset is reflected in the training dataset.

2) Binary class: For binary classification, we assigned
the label “non-malicious” to the benign class and the label
“malicious” to all six types of malicious classes. Our objective
was to assess the performance of the model when trained

on a data with only two class labels, under both balanced
and imbalanced data scenarios. We also evaluated the model’s
performance by comparing training outcomes using various
dataset sizes. For the imbalanced dataset, we utilized 200
network dataset and 4,773 network traffic. For the balanced
dataset, we compared results using sets of 200 and 4,000
network traffic data.

3) Categorical and non-categorical: To convert the nu-
merical network features into categorical values, we utilize the
quantile-based approach, dividing the dataset into five distinct
groups. These groups are labeled as ‘low’, ‘moderate’, ‘high’,
and ‘maximum’ which corresponds to the increasing quantiles
of data distribution. Specifically, ‘minimal’ represents the
lowest one-fifth of the numerical values for each feature, while
‘maximum’ represents the highest one-fifth. This method of
quantile grouping was consistently applied across all features
within the dataset, and was utilized for both balanced and
imbalanced datasets as well as for binary and multi-class
classification task.

C. Baseline Ensemble Models: Random Forest and Gradient
Boosting

We evaluated the effectiveness of our fine-tuned LLM
against baseline machine learning models which are known to
perform well on intrusion detection tasks [24]. Specifically, we
trained two ensemble learning techniques that combine predic-
tions from multiple decision trees to produce a final output.
This method effectively captures the underlying patterns in
both majority and minority classes by aggregating predictions
from multiple trees. On the other hand, Gradient Boosting
builds an ensemble of weak learners sequentially. Each new
learner is specifically trained to address errors made by the
preceding learners, gradually improving the model’s accuracy.
For data preparation, we used label encoding to represent the
seven classes labels numerically, ranging from 0 to 6. The
dataset was subsequently divided into training (80%) and test
(20%) subsets, setting the stage for a comprehensive evaluation
of these models compared to our fine-tuned LLM.

D. Results

As indicated in Tables IV and V, the performance of the
fine-tuned models produced less compelling results across all
scenarios when compared to the baseline models. Furthermore,
models trained on balanced datasets consistently outperformed
those trained on imbalanced datasets in binary classification

5



TABLE V: Performance Metrics for LLM model trained with categorical data
Training Data Class Type Accuracy Precision Recall F1 Score

Balanced Data (200 Network Traffic)
GPT-Binary Class 0.455 0.380 0.455 0.352
GPT-Multi Class 0.100 0.037 0.098 0.044

Imbalanced Data (200 Network Traffic) GPT-Binary Class 0.305 0.281 0.305 0.285
Balanced Data (4000 Network Traffic) GPT-Binary Class 0.015 0.007 0.500 0.148
Imbalanced Data (4773 Network Traffic) GPT-Binary Class 0.985 0.492 0.500 0.496

tasks, regardless of whether the data was numerical or cat-
egorical. The Machine Learning ensemble learning models
(Gradient Boosting and Random Forest) achieved a better
performance with the numerical dataset. This can largely be
attributed to their proficiency in handling numerical data,
which aligns closely with the nature of the original dataset
used in this study. Specifically, among balanced binary class
label, the models trained with numerical features slightly out-
performed those trained with categorical data. Interestingly, the
results from the fine-tuning model trained with smaller datasets
achieved better results than those trained with larger datasets,
a phenomenon observed in both balanced and imbalanced
datasets for both categorical and numerical data types. This
counterintuitive outcome suggests that smaller, well-curated
datasets might be more effective for training under certain
conditions. Finally, it can also be noted that the embedding
similarity approach produced detection results comparable to
those of ensemble learning learning models. This might be as
a result of the signature-based approach which the embedding
similarity utilizes by creating and comparing network embed-
dings similar to a unique signature of the network traffic data.

VII. CONCLUSION AND FUTURE WORK

In this paper, we evaluate the effectiveness of employ-
ing LLMs for intrusion detection within the IoT ecosystem.
We provide a comprehensive analysis of fine-tuned LLMs
across multiple scenarios to explore their potential in de-
tecting security threats. While this approach shows promise,
it generally does not yield results as compelling as those
achieved with traditional machine learning techniques or a
signature-based embedding similarity approach. This disparity
may be attributed to the opaque, ‘black box’ nature of most
LLMs, which can obscure the interpretability of their decision-
making processes for specific tasks. This analysis represents an
initial step towards establishing a robust and efficient natural
language-based framework for intrusion detection in the IoT
environment. Future work entails evaluating additional open-
source LLMs and modifying the architecture of the neural
networks used, to optimize them specifically for intrusion
detection tasks.

REFERENCES

[1] I. Butun, S. D. Morgera, and R. Sankar, “A survey of intrusion detection
systems in wireless sensor networks,” IEEE communications surveys &
tutorials, vol. 16, no. 1, pp. 266–282, 2013.

[2] S. Şen and J. A. Clark, Intrusion detection in mobile ad hoc networks.
Springer, 2009.

[3] OpenAI, “Gpt-4 technical report,” 2023.
[4] D. Araci, “Finbert: Financial sentiment analysis with pre-trained lan-

guage models,” arXiv preprint arXiv:1908.10063, 2019.

[5] Y. Liu and M. Lapata, “Text summarization with pretrained encoders,”
arXiv preprint arXiv:1908.08345, 2019.

[6] W. Jiao, W. Wang, J.-t. Huang, X. Wang, and Z. Tu, “Is chatgpt a good
translator? a preliminary study,” arXiv preprint arXiv:2301.08745, 2023.

[7] F. Li, H. Shen, J. Mai, T. Wang, Y. Dai, and X. Miao, “Pre-trained
language model-enhanced conditional generative adversarial networks
for intrusion detection,” Peer-to-Peer Networking and Applications, pp.
1–19, 2023.

[8] M. A. Ferrag, M. Ndhlovu, N. Tihanyi, L. C. Cordeiro, M. Debbah, and
T. Lestable, “Revolutionizing cyber threat detection with large language
models,” arXiv preprint arXiv:2306.14263, 2023.

[9] C. Almodovar, F. Sabrina, S. Karimi, and S. Azad, “Can language
models help in system security? investigating log anomaly detection
using bert,” in Proceedings of the The 20th Annual Workshop of the
Australasian Language Technology Association, 2022, pp. 139–147.

[10] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[11] L. G. Nguyen and K. Watabe, “Flow-based network intrusion detection
based on bert masked language model,” in Proceedings of the 3rd
International CoNEXT Student Workshop, 2022, pp. 7–8.

[12] E. Aghaei, X. Niu, W. Shadid, and E. Al-Shaer, “Securebert: A domain-
specific language model for cybersecurity,” 2022.

[13] C. Wressnegger, G. Schwenk, D. Arp, and K. Rieck, “A close look on
n-grams in intrusion detection: anomaly detection vs. classification,” in
Proceedings of the 2013 ACM workshop on Artificial intelligence and
security, 2013, pp. 67–76.

[14] K. Rieck and P. Laskov, “Language models for detection of unknown
attacks in network traffic,” Journal in Computer Virology, vol. 2, pp.
243–256, 2007.

[15] N. Sultana, N. Chilamkurti, W. Peng, and R. Alhadad, “Survey on
sdn based network intrusion detection system using machine learning
approaches,” Peer-to-Peer Networking and Applications, vol. 12, no. 2,
pp. 493–501, 2019.

[16] Y. Chang, X. Wang, J. Wang, Y. Wu, K. Zhu, H. Chen, L. Yang, X. Yi,
C. Wang, Y. Wang et al., “A survey on evaluation of large language
models,” arXiv preprint arXiv:2307.03109, 2023.

[17] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[18] Y. Bai, A. Jones, K. Ndousse, A. Askell, A. Chen, N. DasSarma,
D. Drain, S. Fort, D. Ganguli, T. Henighan et al., “Training a helpful and
harmless assistant with reinforcement learning from human feedback,”
arXiv preprint arXiv:2204.05862, 2022.

[19] H. Touvron et al., “Llama 2: Open foundation and fine-tuned chat
models,” arXiv preprint arXiv:2307.09288, 2023.

[20] E. C. P. Neto, S. Dadkhah, R. Ferreira, A. Zohourian, R. Lu, and A. A.
Ghorbani, “Ciciot2023: A real-time dataset and benchmark for large-
scale attacks in iot environment,” Sensors, vol. 23, no. 13, p. 5941,
2023.

[21] B. H. Menze, B. M. Kelm, R. Masuch, U. Himmelreich, P. Bachert,
W. Petrich, and F. A. Hamprecht, “A comparison of random forest and
its gini importance with standard chemometric methods for the fea-
ture selection and classification of spectral data,” BMC bioinformatics,
vol. 10, pp. 1–16, 2009.

[22] M. Douze, A. Guzhva, C. Deng, J. Johnson, G. Szilvasy, P.-E. Mazaré,
M. Lomeli, L. Hosseini, and H. Jégou, “The faiss library,” 2024.

[23] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.

[24] S. S. Dhaliwal, A.-A. Nahid, and R. Abbas, “Effective intrusion detec-
tion system using xgboost,” Information, vol. 9, no. 7, p. 149, 2018.

6


