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Abstract—Deep learning (DL)-based semantic communication
(SC) redefines traditional communication by shifting the focus
from reliable bit-by-bit transmission to conveying only task-
relevant information, thereby reducing bandwidth usage. How-
ever, SC is vulnerable to adversarial attacks due to wireless chan-
nel exposure and the susceptibility of DL models to small input
perturbations. While extensive research has explored adversarial
attacks in image-based SC, there is limited research on text-based
adversarial noise targeting text generation models. Therefore, we
propose Semantic Perturbation Generator (SemPerGe), the first
framework designed to craft targeted adversarial perturbations
in transmitted text data within SC. SemPerGe operates without
prior knowledge of the DL model architecture, parameters, or
logits, instead leveraging off-the-shelf large language models to
introduce semantic noise effectively. The framework is composed
of two phases: (i) a Significant Token Marker that identifies
crucial tokens influencing the semantics of transmitted content
and (ii) a Perturbation Generator, which modifies these tokens
to subtly alter the content’s meaning while preserving linguistic
coherence and grammatical structure. We evaluate SemPerGe
against four baselines across datasets from two application
domains, demonstrating its robustness and adaptability. Addi-
tionally, a user study confirms the stealthiness of the generated
adversarial texts, with 96% of participants unable to detect
adversarial modifications on average.

I. INTRODUCTION

The advent of next-generation networks, such as 5G and
beyond, alongside the proliferation of the Internet of Things
(IoT) has significantly increased the demand for bandwidth due
to the massive scale of simultaneous data transmissions [1].
Traditional communication systems transmit complete message
data, typically encoded in bits or symbols, with an emphasis
on reliability rather than efficiency [2]. To address the growing
strain on bandwidth and spectrum, semantic communication
has been proposed as a paradigm shift: by transmitting only
task-relevant semantic information, this approach enables more
efficient, goal-driven communication using deep learning (DL)
models [3]. Unlike conventional systems that transmit ex-
act message representations, semantic communication systems
extract and transmit minimal yet sufficient information for
downstream tasks (e.g., answering a question or performing a
classification). This focus on intent rather than form introduces
compression and robustness benefits, but it also opens new
security risks. Specifically, the dependence on DL models
renders semantic communication vulnerable to semantic-level

adversarial attacks—perturbations that subtly shift the intended
meaning without syntactic corruption [4].

In text-based semantic communication, such perturbations,
referred to as semantic noise, can be especially damaging.
Small word-level changes may dramatically shift meaning
or mislead downstream tasks, particularly in text generation
applications where coherent sequencing is crucial [5]. Prior
studies have demonstrated the feasibility of over-the-air attacks
in semantic communication [6], but most have focused on im-
age data. Text-based adversarial attacks remain underexplored
in this context despite posing unique challenges due to the
fragility of meaning and coherence in natural language [7].

This paper addresses this gap by introducing the Semantic
Perturbation Generator (SemPerGe), a novel framework for
generating adversarial text perturbations designed to deceive
text generation models within semantic communication frame-
works. Unlike prior work focused on classifiers [8], Sem-
PerGe targets generative tasks, which are inherently more
resistant to shallow perturbations and require nuanced, se-
mantically coherent alterations. Our approach assumes a grey-
box adversary with partial access to transmitted semantic con-
tent—realistic in scenarios where intermediate representations
or over-the-air text sequences are observable [6]. While the
full-stack communication system may include source/channel
encoders and encryption layers, we focus on vulnerabilities in
semantic layers where DL-based generative models operate.

SemPerGe consists of two key components: (i) a Significant
Token Marker that identifies semantically influential tokens us-
ing transformer attention and named entity recognition (NER),
and (ii) a Perturbation Generator that leverages fine-tuned
large language models (LLMs) to craft coherent adversarial
replacements. Importantly, SemPerGe operates without access
to model parameters or logits, highlighting the feasibility of
semantic attacks using publicly available APIs and models.

Our contributions are summarized as follows:

• We introduce SemPerGe, a framework for generating ad-
versarial semantic perturbations in text-generation-based se-
mantic communication systems, using only publicly avail-
able LLMs without requiring internal access to the commu-
nication models.

• SemPerGe features a two-phase architecture: (i) Significant
Token Marker, which heuristically identifies key semantic
tokens using attention maps and NER, and (ii) Perturbation



Generator, which alters these tokens to induce semantic
drift while maintaining syntactical coherence.

• We evaluate SemPerGe on two representative datasets across
different application domains, benchmarking its attack suc-
cess and stealth against four baseline methods. Our results
demonstrate superior effectiveness in misleading generative
models with minimal perceptibility.

• We conduct a human evaluation to assess fluency
and detectability of adversarial examples, validating that
SemPerGe-generated outputs remain semantically deceptive
yet linguistically coherent to human readers.

II. BACKGROUND AND RELATED WORK

A. Transformers

Transformers [9] have transformed NLP [10] by introducing
an architecture capable of modeling long-range dependencies
in text. Unlike traditional sequence models, such as Recur-
rent Neural Networks (RNNs) and Long Short-Term Memory
(LSTM) networks, transformers employ self-attention mech-
anisms that allow them to process input tokens in parallel,
thereby enabling efficient and global context capture [11].

The transformer architecture consists of an encoder-decoder
structure. The encoder processes input sequences, while the
decoder generates output sequences [12]. Input tokens are first
transformed into high-dimensional embeddings that capture
semantic meaning [13]. To retain token order, positional en-
codings are added to these embeddings.

The encoder comprises 𝑁 identical layers, each containing
a multi-head self-attention mechanism followed by a feed-
forward neural network (FFNN). The attention mechanism
computes attention scores between tokens to identify salient
contextual relationships. Multiple attention heads capture di-
verse aspects of token interactions, enriching the overall
contextual understanding. The outputs of the self-attention
mechanism are refined by the FFNN and propagated through
all layers. The decoder mirrors the encoder and also consists
of 𝑁 identical layers. Each layer includes a masked multi-head
self-attention block (to ensure autoregressive generation), a
multi-head attention block for cross-attending to the encoder’s
output, and an FFNN. The decoder shifts its input right-
ward, prepending a special <EOS> (end-of-sequence) token.
Like the encoder, embeddings and positional encodings are
applied [13]. The final output passes through a linear layer
and a Softmax function to yield a probability distribution over
possible next tokens [12].

B. Semantic Communication

Traditional communication systems emphasize accurate data
transmission, commonly measured by bit error rate (BER) or
symbol error rate (SER) [14]. However, as communication
systems evolve toward interconnected, intelligent applications,
the focus shifts toward conveying the meaning or semantics
of information. Semantic communication addresses this shift
by transmitting only task-relevant content, thereby eliminating
redundancy and enabling more efficient communication [15].

Comparison with Traditional Communication. Figure 1
compares traditional and semantic communication systems. In
Fig. 1(a), traditional architectures include a source encoder,
channel encoder, and modulator at the transmitter, paired with
corresponding decoders and a demodulator at the receiver [16].
These modules aim to reliably transmit the full message.

In contrast, Fig. 1(b) introduces a semantic layer that incor-
porates deep learning-based semantic encoders and semantic
decoders, often built on transformer-based LLMs [17]. Here,
the semantic encoder extracts task-relevant features, and the
decoder reconstructs them using background knowledge and
context, improving communication efficiency and robustness.

C. Related Work

DL-based semantic communication systems, while efficient
and task-aware, inherit vulnerabilities from their underlying
neural network models, particularly to adversarial perturba-
tions [18]. Research in this area has focused primarily on
disrupting semantic communication either directly (by mod-
ifying inputs) or over-the-air (by injecting perturbations into
the transmission channel).

Hu et al. [5] proposed an attack that perturbs the semantic
encoder’s input directly to deceive the decoder at the receiver.
However, this assumes access to the transmitter’s data, which
limits applicability in realistic over-the-air threat models. Sag-
duyu et al. [19] demonstrated that even minor perturbations
added over-the-air can manipulate received semantics, mis-
leading both the decoder and downstream task classifiers.
Bahramali et al. [4] introduced universal adversarial pertur-
bations that are input-agnostic, aiming to broadly degrade
model performance without targeting specific outputs. Li et
al. [7], [20] developed a method using a surrogate encoder
and decoder queries to craft perturbations without requiring
access to the actual model. However, most existing research
in semantic communication security focuses on image-based
data, where imperceptible pixel-level changes are effective in
altering semantic outcomes.

In contrast, adversarial research in text-based domains, par-
ticularly NLP, has largely targeted text classifiers. For instance,
TEXTBUGGER [8] introduces character-level and word-level
perturbations (e.g., typos, misspellings) that successfully mis-
lead sentiment or toxicity classifiers. SemAttack [21] iter-
atively modifies words using typos or synonyms to cause
classification shifts. TextGuise [22] alters important tokens
using synonyms or emojis, and LLM-Attack [23] replaces
critical tokens based on model logits. While these methods
are effective for classification models, they often fail to deceive
text generation models, which are more resilient to superficial
perturbations due to their focus on coherent sequences.

Despite advancements in adversarial NLP, there remains
a critical gap in targeting text generation within semantic
communication. Prior approaches either rely on classification-
specific vulnerabilities or assume impractical access to system
internals. We address this gap by proposing SemPerGe, a novel
framework that introduces adversarial perturbations into text
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Figure 1: Comparison of traditional wireless vs. semantic communication: Semantic communication introduces a semantic
encoder at the transmitter to extract task-relevant information and a semantic decoder at the receiver to reconstruct it.

data transmitted over semantic communication systems. Unlike
prior text-based attacks that rely on misspellings or synonym
substitution, SemPerGe identifies semantically significant to-
kens and perturbs them in a way that shifts meaning while
preserving fluency and grammaticality. Leveraging off-the-
shelf LLMs for adversarial text generation, SemPerGe enables
effective deception of both transmitter and receiver in semantic
communication channels, representing a robust approach to
text-based semantic perturbation.

III. THREAT MODEL

Semantic Communication. We consider a wireless semantic
communication system consisting of a transmitter T , receiver
R, and a communication channel, as shown in Fig. 1(b). T ∈
V, where V is the set of legitimate nodes, sends an input
sequence 𝑠 = [𝑤1, 𝑤2, . . . , 𝑤𝐿] composed of 𝐿 words.

The transmitter employs four key components: semantic
encoder, source encoder, channel encoder, and modulator,
sequentially transforming 𝑠 into a modulated analog signal:

𝑥 = 𝑀𝛿 (𝐶𝛼 (𝑄𝛾 (𝑆𝛽 (𝑠)))) (1)

where, 𝑆𝛽 , 𝑄𝛾 , 𝐶𝛼, and 𝑀𝛿 denote the semantic, source,
channel encoders, and modulator with respective parameters.

The receiver observes:

𝑦 = ℎ𝑥 + 𝑛 (2)

where, ℎ represents channel fading and 𝑛 is additive noise. The
receiver recovers the input via demodulation and decoding:

𝑠 = 𝑆−1
𝜆 (𝑄−1

𝜁 (𝐶−1
𝜇 (𝑀−1

Γ (𝑦)))) (3)

where, 𝑀−1
Γ

(𝑦), demodulates the signal with parameters Γ,
𝐶−1
𝜇 (.) corrects channel errors, 𝑄−1𝜁 (.) decompresses the

signal, and 𝑆−1𝜆(·) restores the sequence’s meaning.
The application at R is an LLM-enabled chatbot that pro-

cesses 𝑠 and generates responses for transmission back to the
user.
Adversary’s Goal. The adversary A aims to launch semantic
perturbation attacks that subtly alter the meaning of a message
without affecting its syntactic or grammatical correctness.
The goal is to deceive the chatbot and the end-user in the
considered application scenario.

Example Scenario. Suppose a user sends the query, “I am
planning a trip to Chicago at night. What are the ten best
things to do in Chicago at night?” The semantic encoder may
condense this to “ten best things to do in Chicago at night.” The
adversary intercepts this message and alters “night” to “day,”
preserving grammar and structure but significantly shifting in-
tent. The chatbot’s response, aligned with “daytime” activities,
is then reconstructed at the user’s end as if answering the
original “nighttime” query—creating a semantic inconsistency
undetectable by bit-level integrity checks.

Such an attack is especially critical in safety-sensitive do-
mains. For example, altering a medical chatbot query from
"safe nighttime medications" to "daytime medications" could
lead to hazardous advice.

Adversary’s Knowledge and Capabilities. The adversary
A is assumed to be external to the legitimate set V but
within wireless range of both T and R. A can: (i) Intercept
and decode over-the-air signals using known physical-layer
attack techniques, including eavesdropping, jamming, or side-
channel leakage [6], [24]. (ii) Approximate channel parameters
using DL-based modulation classification and channel estima-
tion [25]. (iii) Inject perturbed semantic signals by exploiting
timing information and retransmission intervals.

While A lacks access to internal parameters of the semantic
encoder/decoder or LLM chatbot, they can infer message
domains through intercepted traffic, enabling domain-specific
semantic perturbations. This reflects a grey-box threat model,
realistic for over-the-air attacks in wireless environments,
where the adversary has knowledge of the wireless stack but
limited access to application-layer DL models.

IV. SEMPERGE: SEMANTIC PERTURBATION GENERATOR

The goal of the proposed semantic noise injection attack is
to introduce subtle but targeted modifications to over-the-air
(OTA) textual transmissions, such that the adversarial mes-
sage preserves grammatical and contextual coherence while
misleading downstream receiver-side applications (e.g., LLM-
based chatbots). As illustrated in Fig.2, the adversary intercepts
a transmission by launching a jamming attack, reconstructs
the message, generates a semantically perturbed version using
the proposed SemPerGe module, and transmits this adversar-
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Figure 2: Overview of the proposed attack: User sends question to a chatbot, which is processed and transmitted. An adversary
intercepts and halts this transmission with a jamming attack and extracts the data. Using SemPerGe, the adversary generates
adversarial data which is transmitted to the chatbot before the user’s original message is retransmitted. Chatbot responds to the
adversarial question, and this response reaches the user after passing through various decoders, including a semantic decoder.

ial message before the original retransmission. The chatbot,
unaware of the perturbation, responds based on the injected
content, thereby subverting the original user-intended interac-
tion. This section presents the design of SemPerGe, which lies
at the core of this attack. SemPerGe operates in two phases:
(1) identifying tokens that carry high semantic weight using
attention-based analysis and NER, and (2) replacing these
tokens using a fine-tuned generative model to create natural-
sounding yet adversarial variants.

Given a reconstructed sequence 𝑠′ obtained by the adversary
from intercepted transmissions, SemPerGe aims to generate
a modified version of 𝑠′ that shifts its semantic intent while
maintaining surface-level fluency. To do this, it first identifies
semantically significant tokens in 𝑠′ and then replaces these
tokens in a way that maximally alters meaning without trig-
gering syntactic or fluency violations. The two phases are:

Phase 1: Identifying Semantically Significant Tokens.
This phase, termed the Significant Token Marker, seeks to
isolate a subset of tokens in 𝑠′ whose modification is likely
to change the overall meaning of the sentence. Our design
assumption is that the adversary does not have access to the
exact models used at the receiver or transmitter. Instead, the
adversary uses a transformer-based encoder model (pre-trained
and publicly available) to analyze the text.

We extract token-level attention scores from all layers and
heads of the encoder model. Each attention layer 𝑙 contains
multiple heads and yields an output tensor 𝑂𝑙 ∈ R |𝐽 |×𝑑model ,
where |𝐽 | is the number of tokens in 𝑠′ and 𝑑model is the
embedding dimension. We aggregate the attention weights per
token as:

𝑆′𝑙, 𝑗 =
©­«
𝑑𝑚𝑜𝑑𝑒𝑙∑︁
𝜙=1

𝑂𝑙, 𝑗 ,𝜙
ª®¬ (4)

Collecting these scores across all 𝐿 layers, we form the
attention score matrix S′ ∈ R𝐿×|𝐽 | :

S′ =


𝑆′1,1 . . . 𝑆′1, |𝐽 |
...

. . .
...

𝑆′
𝐿,1 . . . 𝑆′

𝐿, |𝐽 |

 (5)

To quantify the importance of each token, we compute the
frequency with which a token has the highest attention score
across layers:

𝑗𝑚𝑎𝑥 (𝑙) = arg max
𝑗

𝑆′𝑙 , 𝑐 𝑗 =

(
𝐿∑︁
𝑙=1

1[ 𝑗𝑚𝑎𝑥 (𝑙)= 𝑗 ]

)
(6)

Normalizing these frequencies using a softmax operation
yields the token significance vector 𝜆 ∈ R1×|𝐽 | :

𝜆 = Softmax( [𝑐1, 𝑐2, . . . , 𝑐 |𝐽 | ]) (7)

To further refine token importance based on task-specific
salience, we incorporate an application-specific NER model.
Tokens identified as named entities (e.g., names, locations,
organizations) are boosted in their significance score within 𝜆,
while others are down-weighted. Finally, the top-ranked tokens
in the adjusted 𝜆 are selected for perturbation and masked in
𝑠′ using the [MASK] token.

Phase 2: Generating Adversarial Perturbations. The sec-
ond phase, the Perturbation Generator, replaces masked tokens
in 𝑠′ with contextually coherent but semantically divergent



alternatives. A naive use of masked language models (MLMs)
often results in either exact token recovery or substitution with
close synonyms—behaviors that do not achieve our adversarial
goal of semantic deviation.

Instead, we use a fine-tuned sequence-to-sequence (seq2seq)
text generation model [26], trained on a custom attack-specific
dataset, to predict adversarial substitutions. For each masked
token 𝑚, we consider a candidate set Y = [𝑚, 𝑦1, . . . , 𝑦𝑁 ] of
possible replacements. We identify a synonym subset Y′ ⊆ Y
using lexical similarity tools (e.g., WordNet and embedding-
based cosine similarity), and ensure that the replacement token
is drawn from Y \ (Y′ ∪ 𝑚).

The generator is trained to optimize a balance between
semantic shift and grammaticality, thereby producing adver-
sarial messages that are both deceptive and natural-sounding.
This distinguishes our method from standard paraphrasing
techniques or simple synonym substitutions.

This multi-step pipeline ensures that injected messages
(i) bypass syntactic anomaly detectors, (ii) exploit semantic
vulnerabilities in downstream models (e.g., LLMs), and (iii)
maintain realism, making them difficult to detect using stan-
dard methods. The next section will evaluate the effectiveness
of SemPerGe across application-level tasks and threat models.

V. EVALUATION

Experimental Setup. We conduct all experiments on an
Ubuntu 18.04.6 system equipped with a single NVIDIA RTX
𝐴6000 GPU (48 GB VRAM). The proposed SemPerGe frame-
work is implemented in PyTorch and uses additional libraries
from Hugging Face for accessing pre-trained models and APIs.
Unless stated otherwise, all experiments use a learning rate of
1×10−4, batch size of 8, and 20 training epochs for fine-tuning,
with early stopping triggered after 5 epochs without validation
loss improvement.
Datasets. To evaluate the effectiveness of adversarial at-
tacks in semantic communication, we consider both general-
domain and specialized-domain question-answer datasets: We-
bQuestions [27], benchmark QA dataset with 6,642 question-
answer pairs, focusing on factual questions involving named
entities commonly queried online; and AI-Medical-Chatbot
dataset [28], large-scale dataset (approx. 257,000 dialogues)
featuring realistic doctor-patient conversations across diverse
medical domains. It enables the evaluation of semantic vul-
nerabilities in safety-critical applications like healthcare.

These datasets are selected to assess the generalizability of
SemPerGe across domains with different linguistic character-
istics and sensitivity levels.

A. Semantic Perturbation Generation

Semantic Communication Setup. We implement a
lightweight semantic communication model using GPT-4 [29]
as both encoder and decoder. The encoder summarizes the
question-answer pair to minimize transmission size, while the
decoder reconstructs the content post-transmission. This aligns
with recent efforts to reduce bandwidth usage in AI-driven
communication systems.

Perturbation Target. We focus on perturbing questions (not
answers), as these initiate the QA exchange. Attacking ques-
tions ensures stealthier manipulation of downstream answers
while preserving dialogue structure.

1) Significant Token Masking: To identify influential to-
kens, we use dataset-specific pre-trained BERT models for
attention extraction. Specifically, BERT-base-uncased [30] for
WebQuestions dataset, while BioClinicalBERT [31] model
is used for AI-Medical-Chatbot datasets. These BERT-based
models, known for their robust, contextualized embeddings
and effectiveness across diverse NLP tasks, are well-suited for
reliably extracting attention scores.

Token-level significance scores are computed using Equa-
tions 5–7, incorporating both model attention and context
relevance. We further enhance this by incorporating NER:
(i) BERT-base-NER [32] for general entities (e.g., PERSON,
LOCATION), and (ii) Medical-NER [33] for medical-specific
entities (e.g., SIGN_SYMPTOM, DISEASE). This dual-layer
scoring ensures perturbations target semantically impactful
words, not just syntactically prominent ones. Tokens with the
highest combined scores are masked for transformation.

2) Perturbation Generation: To generate plausible replace-
ments for masked tokens, we fine-tune FLAN-T5 [34] on
custom synthetic datasets created via ChatGPT. Each masked
question is associated with three diverse rewordings that avoid
simple synonym substitutions, to ensure a significant and
notable shift in chatbot responses. We manually validate all
outputs to ensure they introduce subtle semantic drift while
maintaining grammatical and contextual fluency.

Fine-tuning is conducted separately for WebQuestions and
AI-Medical-Chatbot, using a 70:20:10 (training, validation,
and testing) split. The best-performing model for each dataset
was selected based on the lowest observed validation loss.
FLAN-T5 then generates adversarially perturbed questions
from test inputs. We use GPT-4 and Medichat-Llama3-8B to
generate corresponding answers for attack evaluation.

B. Evaluation Metrics

To assess the effectiveness of our generated adversarial per-
turbations, we employ four standard metrics: BLEU, ROUGE,
grammatical correctness, and attack success rate, representing
both linguistic similarity metrics and semantic robustness. In
addition, we examine the text expansion rate to ensure com-
pactness in adversarial questions, which is vital in semantic
communication.
BLUE Score. The Bilingual Evaluation Understudy (BLEU)
metric [35] measures how closely the generated adversarial
question matches the original by evaluating the shared n-grams
(consecutive words). Scores range from 0 to 1, with higher
values indicating greater similarity. It helps verify that only
selected tokens are altered, preserving the question’s structure.
ROUGE Score. The Recall-Oriented Understudy for Gisting
Evaluation (ROUGE) [35] measures overlap with the origi-
nal question, emphasizing recall rather than precision. Using
ROUGE-1, ROUGE-2, ROUGE-L, and ROUGE-Lsum, we



assess matches at different n-gram scales and sequence levels,
ensuring key elements are preserved while only selected tokens
are altered.
Text Expansion Rate (TER). Captures character-length in-
flation in adversarial queries, calculated as the difference in
the character count between the original and adversarial text.
Lower TER is preferred to preserve transmission efficiency.
Grammatical Correctness Score (GCC). Scores the linguis-
tic fluency of perturbed text using a pre-trained grammar
checker [36], assigning a score between 0 and 1 based on
grammatical integrity. High scores reduce the chance of human
or automated detection.
Attack Success Rate (ASR). Measures the proportion of
queries where perturbed questions cause a semantic change
in chatbot answers. Semantic change is defined using cosine
similarity of sentence embeddings (from Sentence-BERT [37]).
Responses with similarity < 0.99 are marked as successful
attacks. To avoid false positives from rephrased but equivalent
responses, we set the temperature value of generative models
to 0 to ensure determinism and also manually validate such
edge cases. Figure 3 shows examples from the WebQues-
tions dataset, showcasing varying semantic scores obtained by
threshold analysis.

Original Question: What form of currency does the Germany use?

Adversarial Question: What form of currency does France use? 

(Received after semantic decoder processing)

(Transmitted after semantic encoder processing)

Semantic score: 1.00

1

2

3

Original Answer: Germany uses the euro (EUR) as its currency.

Adversarial Answer: euro (EUR)

Adversarial Answer: Germany uses euro (EUR) as its currency.

Semantic score: 0.89

Semantic score: 0.91

Adversarial Question: What form of currency does France use? 

(Received after semantic decoder processing)

(Transmitted after semantic encoder processing)
Adversarial Answer: euro (EUR)

Adversarial Answer: Euro (EUR) is the currency used by Germany. 

Adversarial Question: What form of currency does Canada use? 

(Received after semantic decoder processing)

(Transmitted after semantic encoder processing)
Adversarial Answer: Canadian dollar (CAD)

Adversarial Answer: Germany uses the Canadian dollar (CAD) as its currency.

Figure 3: Illustrative examples of semantic similarity
thresholds. (1) Failed attack (score = 1.0), (2) Successful at-
tack (score < 0.99), and (3) False positive due to paraphrasing.

C. Baselines

We benchmark SemPerGe against four state-of-the-art
black-box adversarial NLP attacks:
TextBugger [8]. This method perturbs characters or replaces
words using GloVe neighbors.
SemAttack [21]. This method applies typos, GloVe-based
replacements, and BERT-vocab neighbors.

Dataset: WebQuestions
BLEU: 0.807
ROUGE-1: 0.833, ROUGE-2: 0.800, ROUGE-L: 0.833, ROUGE-LSum: 0.833

Original: What document did Thomas Jefferson wrote?
Adversarial: What document did Albert Einstein write?

Dataset: AI-Medical-Chat
BLEU: 0.882
ROUGE-1: 0.900, ROUGE-2: 0.888, ROUGE-L: 0.900, ROUGE-LSum: 0.900

Original: I have small jaw bones, scoliosis, and swollen face. Please help.
Adversarial: I have big jaw bones, fever, and swollen face.

Figure 4: SemPerGe output with lower ROUGE and BLEU
scores: Reductions in scores often result from correcting
grammatical errors and omitting filler sentences.

TextGuise [22]. This approach adds emojis or dictionary
meanings for semantic drift.
LLM-Attack [23]. LLM-Attack substitutes word with syn-
onyms suggested by LLMs, selecting the alternative text that
best aligns semantically with the original text.

These baselines iteratively remove words from the target
text, evaluating their impact on target model to determine
significance and select optimal perturbations. Assuming the
adversary lacks access to target models (GPT-4 and Medichat-
Llama3-8B), we employ GPT-2 for this task.

D. Attack Performance

Table I compares performance across all metrics for both
datasets. While baseline methods score slightly higher on
BLEU and ROUGE, largely due to their reliance on direct
token substitutions, they often introduce noticeable artifacts
such as unnatural phrasing or character-level noise. In contrast,
SemPerGe uses generative rewriting to maintain naturalness
and stealth. Despite a marginal drop in BLEU (e.g., 0.99 vs.
1.00), SemPerGe achieves higher GCC scores due to fluent
rephrasings, lower TER, and a more compact input reformula-
tion. This approach often introduces grammatically enhanced
or contextually refined alternatives and omits redundant filler
phrases, all while preserving the original semantic intent.
Figure 4 illustrates examples where SemPerGe’s outputs yield
slightly lower ROUGE and BLEU scores—not due to semantic
degradation, but because of deliberate grammatical improve-
ments or removal of non-essential phrases (e.g., "wrote" im-
proved, or filler phrases like "Please help" removed). These
align with SemPerGe’s goals of stealth and semantic quality.

SemPerGe generates shorter text: -1.52% (Web) and -2.09%
(Medical) character reduction. In contrast, baselines generally
increase length: TextBugger shows marginal changes, while
SemAttack and LLM-Attack increase text size by 2–3%;
TextGuise increases it drastically (107% Web, 59.18% Medi-
cal) by replacing words with verbose definitions.

Grammatical accuracy is high for SemPerGe (0.970 Web,
0.945 Medical), close to the original inputs and higher than
most baselines. TextBugger and TextGuise degrade syntax
quality significantly, while LLM-Attack maintains grammar
but lacks stealth.



Attack Model SemPerGe TextBugger TextGuise SemAttack LLM-Attack
Dataset Web Medical Web Medical Web Medical Web Medical Web Medical
BLEU 0.997 0.987 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ROUGE-1 0.998 0.993 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ROUGE-2 0.997 0.990 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ROUGE-L 0.998 0.993 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ROUGE-Lsum 0.998 0.993 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
∗Text Expansion Rate -1.52% -2.09% -0.36% 1.24% 107% 59.18% 2.70% 3.35% 1.37% 2.04%

∗Grammatical Correctness 0.970 0.945 0.912 0.895 0.889 0.856 0.896 0.894 0.960 0.941
∗Success Rate 91.71% 86.19% 5.42% 2.84% 13.25% 6.18% 1.60% 6.67% 2.41% 7.03%

Table I: Performance comparison of SemPerGe and baselines on text-generation models: ‘Web’ and ‘Medical’
denote WebQuestions and AI-Medical-Chatbot datasets. Metrics marked with ∗ indicate those most related to the
attack efficiency. Negative ‘Text Expansion Rate’ values signify text length reduction. Baselines show higher BLEU
and ROUGE scores as they do not use LLMs.

Attack Model Text (WebQuestions dataset) Text (AI-Medical- Chatbot dataset)
Original How deep is Lake Merritt Oakland? How to increase my height? I am 23 years old.

SemPerGe How deep is Lake Tahoe Nevada? How to increase my weight? I am 23 years old.
TextBugger How de ep is Lake Merritt Oakland? How to increase my hei ght? I am 23 years old.

TextGuise How :| deep :| is Lake Merritt Oakland? How to increase my The vertical distance from the ground
to the highest part of a standing person? I am 23 years old.

SemAttack How sediment is Lake Merritt Oakland? How to increase my tallness? I am 23 years old.
LLM-Attack How abyssal is Lake Merritt Oakland? How to increase my length? I am 23 years old.

Table II: Adversarial Examples from SemPerGe and Baselines on WebQuestions nad AI-Medical-Chatbot Datasets:
SemPerGe successfully modifies the semantics of the question, leading to adversarial answers, whereas baselines fail to alter
semantics using simple character-level, synonym and dictionary-based perturbations.

SemPerGe also achieves the highest ASR: 91.71% (Web)
and 86.19% (Medical), far outperforming baselines (max
13.25% Web, 7.03% Medical). The primary reason for baseline
models’ lower ASR is their focus on deceiving text classifiers,
rather than text generation models, typically achieved through
minor grammatical errors or synonym replacements. To the
best of our knowledge, there is no prior research focusing on
generating text-based adversarial perturbations to deceive text
generation models in the semantic communication scenario.

Examples of adversarial texts generated by SemPerGe and
baseline methods on one sample of the WebQuestions and
AI-Medical-Chatbot datasets are shown in Table II. In the
Web example, it replaces “Merritt Oakland”, the significant
token, with “Tahoe Nevada,” misleading the model. Baselines
make minor changes (e.g., inserting emojis) that do not alter
outputs. In the Medical case, SemPerGe replaces “height” with
“weight,” changing the clinical advice. However, the minimal
changes generated by the baselines exhibit minimal to no
changes in meaning.

Timing Analysis. In over-the-air attack scenarios, speed is
critical. Adversaries must transmit modified content before the
original is re-sent. Thus, the time to generate adversarial text
directly impacts attack feasibility. Our timing measurements
isolate generation time, excluding any communication delays.

Fig. 5 compares the average time required to generate
adversarial text across different models on the datasets. On
the WebQuestions dataset, SemPerGe requires approximately
0.15s per sample on average. In comparison, LLM-Attack,
TextGuise, TextBugger, and SemAttack require 4.74s, 5.86s,
6.23s, and 129.50s, respectively. On the Medical dataset,
SemPerGe also leads at 0.74s, while the baselines again
show higher delays: 6.64s (LLM-Attack), 7.20s (TextGuise),
8.00s (TextBugger), and 115.31s (SemAttack). The baselines’
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Figure 5: Average adversarial text generation time compar-
ison: SemPerGe consistently requires less time for adversarial
text generation compared to baseline methods.

longer times result from repeated target model queries to find
perturbation candidates. SemAttack is especially slow due to
exhaustive synonym searches across the entire vocabulary.

Figures 6(a) and 6(b) show how generation time scales with
input length. SemPerGe remains nearly constant regardless of
text length, while baseline methods exhibit increasing latency,
further highlighting SemPerGe’s scalability.

VI. FURTHER ANALYSIS

A. Transferability

We evaluate SemPerGe’s transferability beyond text gener-
ation by testing its effectiveness against text classifiers—a key
area in adversarial NLP. This analysis targets sentiment clas-
sification using the Stanford Sentiment Treebank dataset (via
Hugging Face [38]) and three widely-used classifiers: 𝑚𝑜𝑑𝑒𝑙1
[39] (RoBERTa, fine-tuned on TweetEval [40]), 𝑚𝑜𝑑𝑒𝑙2 [41]
(an enhanced, robust variant of 𝑚𝑜𝑑𝑒𝑙1), and 𝑚𝑜𝑑𝑒𝑙3 [42]
(BERT, trained on multilingual product reviews).
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Figure 6: Perturbation generation time vs. word count:
Adversarial text generation times of SemPerGe show minimal
variation across different text lengths.

To support this task, we adapt SemPerGe by replac-
ing the NER module with a general-purpose part-of-speech
(POS) tagger [43], focusing on adjectives, adverbs, verbs,
and nouns—key carriers of sentiment. We retain the BERT-
base-uncased model for token salience scoring and fine-tune a
FLAN-T5 model on a synthetic dataset tailored for misleading
sentiment classifiers. Unlike baselines, which require white-
box access to the target model, our attack assumes a black-box
setup. Thus, baselines use an alternative sentiment model [44]
for guidance.

Table III shows that SemPerGe achieves the highest ASR,
while maintaining BLEU and ROUGE scores comparable to
baselines. It also introduces fewer character-level changes and
maintains strong grammatical quality (0.845), close to the
original dataset’s average (0.851). In contrast, baselines exhibit
lower ASRs and degraded fluency, reflecting their depen-
dence on target model access for iterative optimization—an
unrealistic assumption in black-box settings. A sample in
Table IV illustrates that SemPerGe can flip sentiment labels
while preserving syntactic fluency, whereas baselines often
produce awkward or grammatically compromised outputs.

These results affirm SemPerGe’s robustness and adaptability
across NLP tasks, demonstrating strong performance even
without access to the target model.

Metrics SemPerGe TextBugger TextGuise SemAttack LLM-Attack
BLEU 0.945 1.00 1.00 1.00 1.00

ROUGE-1 0.971 1.00 1.00 1.00 1.00
ROUGE-2 0.950 1.00 1.00 1.00 1.00
ROUGE-L 0.962 1.00 1.00 1.00 1.00

ROUGE-LSum 0.971 1.00 1.00 1.00 1.00
∗TER 1.14% 1.01% 9.11% 1.66% 1.81%
∗GCC 0.845 0.814 0.822 0.815 0.821

∗ASR

model1 73.09% 40.65% 20.87% 46.15% 20.87%[39]
model2 64.32% 29.67% 24.17% 36.26% 15.38%[41]
model3 61.81% 35.14% 15.38% 35.27% 23.07%[42]

Table III: Comparison of attack performance on sentiment-
classifiers using SemPerGe and baselines: Metrics marked
with ∗ denote the metrics closely related to the attack effi-
ciency. Baselines achieve higher BLEU and ROUGE scores
due to their non-use of LLMs. Model1, model2, and model3
are three considered sentiment classification models.

Attack Model Text
Original Time Warner’s HD line up is crap.

SemPerGe Time Warner’s HD line up is good.
TextBugger Time Warner’s HD line up is cr ap.
TextGuise Time Warner’s HD line up is :| crap :|.
SemAttack Time Warner’s HD line up is bad.

LLM-Attack Time Warner’s HD line up is nonsense.

Table IV: Adversarial Examples from SemPerGe and Base-
lines on Sentiment Dataset: SemPerGe modifies the senti-
ment of the text leading to misclassification, while baselines
fail to change the sentiment through simple character-level,
synonym and emoji-based perturbations.

Metrics Part 1 Part 2
Within Context 95% -

Grammatically Correct - 92.5%
Semantically Correct - 100%

Table V: User study results: 95% of participants rated
adversarial answers are within the context of the original
questions, verifying attack stealthiness. 92.5% and 100% of
participants rated the adversarial questions as grammatically
and semantically accurate, respectively.

B. User Study

We conducted a human evaluation with 40 participants to
assess the stealth and linguistic quality of adversarial questions
generated by SemPerGe. The study, administered via Google
Forms, was divided into two parts. In the first part, participants
were presented 10 benign questions paired with adversarial an-
swers (from WebQuestions and AI-Medical-Chatbot datasets)
and asked whether the answers appeared contextually appropri-
ate. This measured attack stealth—i.e., whether perturbations
altered the original question’s meaning in a detectable way.
In the second section, evaluated 20 adversarially generated
questions from the same datasets for grammatical and seman-
tic correctness. This assessed whether the adversarial inputs
preserved natural language fluency—important for remaining
undetected by human or automated scrutiny.

As shown in Table V, 95% of participants found adversarial
answers contextually aligned with their respective questions,
suggesting strong stealth characteristics. In Part 2, 100% of
participants rated adversarial questions as semantically ac-
curate, and 92.5% judged them grammatically correct. The
slight dip in grammatical ratings is attributed to preexisting
grammatical issues in the original questions (see Section V-D).

VII. CONCLUSION

In this paper, we introduced SemPerGe, a novel framework
for text-based adversarial attacks targeting black-box text-
generation models, particularly question-answering systems.
SemPerGe operates in two phases: identifying semantically
significant tokens and perturbing them to induce adversarial se-
mantic shifts while preserving grammatical and contextual co-
herence. Extensive experiments show that SemPerGe achieves
high attack success rates and strong linguistic fidelity, out-
performing state-of-the-art baselines. A user study further
validated the stealth and fluency of generated adversarial in-



puts. Beyond QA, we demonstrated SemPerGe’s transferability
by successfully applying it to sentiment classification tasks,
highlighting its adaptability across NLP domains. Future work
will explore extending SemPerGe to other generative tasks
such as text summarization, broadening its applicability and
further investigating its impact in diverse adversarial settings.

REFERENCES

[1] P. Agbaje, A. Anjum, A. Mitra, E. Oseghale, G. Bloom, and H. Olu-
fowobi, “Survey of interoperability challenges in the internet of vehi-
cles,” IEEE Transactions on Intelligent Transportation Systems, vol. 23,
no. 12, pp. 22 838–22 861, 2022.

[2] Z. Yang, M. Chen, G. Li, Y. Yang, and Z. Zhang, “Secure semantic
communications: Fundamentals and challenges,” IEEE Network, 2024.

[3] Y. Liu, X. Wang, Z. Ning, M. Zhou, L. Guo, and B. Jedari, “A survey
on semantic communications: technologies, solutions, applications and
challenges,” Digital Communications and Networks, 2023.

[4] A. Bahramali, M. Nasr, A. Houmansadr, D. Goeckel, and D. Towsley,
“Robust adversarial attacks against dnn-based wireless communication
systems,” in Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, 2021, pp. 126–140.

[5] Q. Hu, G. Zhang, Z. Qin, Y. Cai, G. Yu, and G. Y. Li, “Robust semantic
communications against semantic noise,” in 2022 IEEE 96th Vehicular
Technology Conference (VTC2022-Fall). IEEE, 2022.

[6] L. Lu, M. Chen, J. Yu, Z. Ba, F. Lin, J. Han, Y. Zhu, and K. Ren, “An
imperceptible eavesdropping attack on wifi sensing systems,” IEEE/ACM
Transactions on Networking, 2024.

[7] Z. Li, J. Zhou, G. Nan, Z. Li, Q. Cui, and X. Tao, “Sembat: Physical
layer black-box adversarial attacks for deep learning-based semantic
communication systems,” in 2022 IEEE 96th Vehicular Technology
Conference (VTC2022-Fall). IEEE, 2022, pp. 1–5.

[8] J. Li, S. Ji, T. Du, B. Li, and T. Wang, “Textbugger: Generat-
ing adversarial text against real-world applications,” arXiv preprint
arXiv:1812.05271, 2018.

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[10] DeepLearning.AI, “A complete guide to natural language processing,”
2023. [Online]. Available: https://www.deeplearning.ai/resources/natura
l-language-processing/

[11] G. Giacaglia, “How transformers work,” Toward Data Science, 2019.
[Online]. Available: https://towardsdatascience.com/transformers-141e3
2e69591

[12] S. More, “Transformer architecture , transformer model types
and its use-cases,” Medium, 2023. [Online]. Available: https:
//medium.com/@sandyonmars/transformer-architecture-transformer-m
odel-types-and-its-use-cases-fb2afb89683c

[13] L. Bansal, “Transformer — attention is all you need easily
explained with illustrations,” Medium, 2021. [Online]. Available:
https://luv-bansal.medium.com/transformer-attention-is-all-you-need-e
asily-explained-with-illustrations-d38fdb06d7db

[14] H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled seman-
tic communication systems,” IEEE Transactions on Signal Processing,
vol. 69, pp. 2663–2675, 2021.

[15] Q. Zhou, R. Li, Z. Zhao, C. Peng, and H. Zhang, “Semantic communi-
cation with adaptive universal transformer,” IEEE Wireless Communica-
tions Letters, vol. 11, no. 3, pp. 453–457, 2021.

[16] S. More, “Digital communication - quick guide,” Tutorialspoint.
[Online]. Available: https://www.tutorialspoint.com/digital\_communic
ation/digital\_communication\_quick\_guide.html

[17] A. Anjum, M. E. Eren, I. Boureima, B. Alexandrov, and M. Bhattarai,
“Tensor train low-rank approximation (tt-lora): Democratizing ai with
accelerated llms,” arXiv preprint arXiv:2408.01008, 2024.

[18] M. Shen, J. Wang, H. Du, D. Niyato, X. Tang, J. Kang, Y. Ding, and
L. Zhu, “Secure semantic communications: Challenges, approaches, and
opportunities,” IEEE Network, 2023.

[19] Y. E. Sagduyu, T. Erpek, S. Ulukus, and A. Yener, “Is semantic
communication secure? a tale of multi-domain adversarial attacks,” IEEE
Communications Magazine, vol. 61, no. 11, pp. 50–55, 2023.

[20] Z. Li, X. Liu, G. Nan, J. Zhou, X. Lyu, Q. Cui, and X. Tao, “Boosting
physical layer black-box attacks with semantic adversaries in semantic
communications,” in ICC 2023-IEEE International Conference on Com-
munications. IEEE, 2023, pp. 5614–5619.

[21] B. Wang, C. Xu, X. Liu, Y. Cheng, and B. Li, “Semattack: Natural textual
attacks via different semantic spaces,” arXiv preprint arXiv:2205.01287,
2022.

[22] G. Chang, H. Gao, Z. Yao, and H. Xiong, “Textguise: Adaptive adversar-
ial example attacks on text classification model,” Neurocomputing, vol.
529, pp. 190–203, 2023.

[23] Z. Wang, W. Wang, Q. Chen, Q. Wang, and A. Nguyen, “Generating
valid and natural adversarial examples with large language models,” in
2024 27th International Conference on Computer Supported Cooperative
Work in Design (CSCWD). IEEE, 2024, pp. 1716–1721.

[24] M. Alyami, I. Alharbi, C. Zou, Y. Solihin, and K. Ackerman, “Wifi-
based iot devices profiling attack based on eavesdropping of encrypted
wifi traffic,” in 2022 IEEE 19th Annual Consumer Communications &
Networking Conference (CCNC). IEEE, 2022, pp. 385–392.

[25] M. Soltani, V. Pourahmadi, A. Mirzaei, and H. Sheikhzadeh, “Deep
learning-based channel estimation,” IEEE Communications Letters,
vol. 23, no. 4, pp. 652–655, 2019.

[26] S. S. Hebbar, “Text generation v/s text2text generation,” Medium, 2023.
[Online]. Available: https://medium.com/@sharathhebbar24/text-generat
ion-v-s-text2text-generation-3a2b235ac19b

[27] J. Berant, A. Chou, R. Frostig, and P. Liang, “Semantic parsing on free-
base from question-answer pairs,” in Proceedings of the 2013 conference
on empirical methods in natural language processing, 2013.

[28] R. M. Vsevolodovna, “ai-medical-chatbot,” HuggingFace, 2024.
[Online]. Available: https://huggingface.co/datasets/ruslanmv/ai-m
edical-chatbot

[29] OpenAI, “Gpt-4 is openai’s most advanced system, producing safer
and more useful responses,” OpenAI, 2023. [Online]. Available:
https://openai.com/index/gpt-4/

[30] J. D. M.-W. C. Kenton and L. K. Toutanova, “Bert: Pre-training of deep
bidirectional transformers for language understanding,” in Proceedings
of naacL-HLT, vol. 1. Minneapolis, Minnesota, 2019.

[31] E. Alsentzer, “Bio_clinicalbert,” HuggingFace, 2020. [Online].
Available: https://huggingface.co/emilyalsentzer/Bio\_ClinicalBERT

[32] D. S. Lim, “bert-base-ner,” HuggingFace, 2020. [Online]. Available:
https://huggingface.co/dslim/bert-base-NER/tree/main

[33] S. M, “Medical-ner,” HuggingFace, 2024. [Online]. Available: https:
//huggingface.co/blaze999/Medical-NER/tree/main

[34] Google, “google/flan-t5-base,” Hugging Face, 2022. [Online]. Available:
https://huggingface.co/google/flan-t5-base/tree/main

[35] Q. Herreros, T. Veasey, and T. Papaoikonomou, “Rag evaluation
metrics: A journey through metrics,” Elastic Search labs, 2023.
[Online]. Available: https://www.elastic.co/search-labs/blog/evaluating-r
ag-metrics#n-gram-metrics

[36] X. Yang, “yang-grammer-check,” HuggingFace, 2024. [Online]. Avail-
able: https://huggingface.co/xy4286/yang-grammer-check/tree/main

[37] S. Seelam, “Machine learning fundamentals: Cosine similarity and
cosine distance,” Medium, 2021. [Online]. Available: https://medium.c
om/geekculture/cosine-similarity-and-cosine-distance-48eed889a5c4

[38] S. NLP, “stanfordnlp/sentiment140,” Hugging Face, 2022. [Online].
Available: https://huggingface.co/datasets/stanfordnlp/sentiment140/tree/
main

[39] C. NLP, “cardiffnlp/twitter-roberta-base-sentiment,” Hugging Face,
2020. [Online]. Available: https://huggingface.co/cardiffnlp/twitter-rob
erta-base-sentiment

[40] F. Barbieri, J. Camacho-Collados, L. Neves, and L. Espinosa-Anke,
“Tweeteval: Unified benchmark and comparative evaluation for tweet
classification,” arXiv preprint arXiv:2010.12421, 2020.

[41] C. NLP, “cardiffnlp/twitter-roberta-base-sentiment-latest,” Hugging Face,
2022. [Online]. Available: https://huggingface.co/cardiffnlp/twitter-rob
erta-base-sentiment-latest

[42] N. Town, “nlptown/bert-base-multilingual-uncased-sentiment,” Hugging
Face, 2020. [Online]. Available: https://huggingface.co/nlptown/bert-b
ase-multilingual-uncased-sentiment

[43] Flair, “flair/upos-multi,” Hugging Face, 2022. [Online]. Available:
https://huggingface.co/flair/upos-multi

[44] C. NLP, “cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual,”
Hugging Face, 2022. [Online]. Available: https://huggingface.co/c
ardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual


