
In-Vehicle Network Anomaly Detection Using
Extreme Gradient Boosting Machine

Afia Anjum1, Paul Agbaje1, Sena Hounsinou2, Habeeb Olufowobi1
1: University of Texas at Arlington, Arlington, TX, USA

2: University of Colorado Colorado Springs, Colorado Springs, CO, USA
{afia.anjum, pauloluwatowoju.agbaje, habeeb.olufowobi}@uta.edu, shoueto@uccs.edu

Abstract—Modern vehicles have significantly increased the
number of Internet of Things (IoT) devices called electronic
control units (ECUs) connected by in-vehicle networks to provide
enhanced features and safety. These devices communicate with
the environment and have brought the notion of the Internet
of vehicles. The controller area network (CAN) bus facilitates
efficient ECU communications and is the standard protocol
used by every vehicle, but it is susceptible to remote attacks.
Consequently, it is desirable to monitor the CAN bus for malicious
activities, such as data injection attacks, that can compromise the
vehicular operations. We present an anomaly detection technique
that uses an extreme gradient boosting machine (GBM) learning
algorithm to categorize unexpected occurrences in the CAN data
payload. We further combine GBM with a ten-fold cross-validation
method to improve prediction performance. Moreover, we use the
early-stopping and grid search approaches to overcome overfitting
without affecting model accuracy. We evaluate our detection
approach on real CAN bus datasets collected from Hyundai
Sonata, a KIA Soul, and Chevrolet Spark with different attack
scenarios, such as Denial-of-Service (DoS), fuzzy, spoofing, and
malfunction attacks. Using standard metrics, such as accuracy,
recall, precision, F1 score, and false-positive rate, the performance
analysis of the proposed model achieved an overall accuracy of
over 99 percent.

I. INTRODUCTION

The Internet of Vehicles (IoV) is an emerging cyber-physical
system (CPS) that fuses the Internet of Things (IoT), communi-
cation networks, and the cloud to support vehicular operations
as a result of the increasing proliferation of embedded sensors
integrated into automobiles and their connectivity to the In-
ternet. These sensors are attached to devices called electronic
control units (ECUs) that have become a fundamental part of
the vehicle architecture. ECUs increase vehicular functionality
in terms of safety, comfort, and automation. This proliferation
has also opened up the once closed vehicular systems to
cyber and physical attacks [1]. The security of ECUs and
their communication across the in-vehicle networks are of
paramount importance, as their ubiquity has given rise to many
vulnerable threat points for cyber attackers. To date, there is
no standardized framework for securing automotive in-vehicle
networks, such as the controller area network (CAN) that
facilitates ECU communications. Hence, the connected vehicle
ecosystem is vulnerable to cyber-attacks. Previous research [2]–
[6] has shown that attacks on in-vehicle networks represent
severe risks to the automotive sector since they directly affect
driver safety, data privacy, and service continuity.

Many studies have been conducted that apply classification-
based machine learning techniques on CAN bus traffic to detect

anomalous events, which indicate an attack. However, these
techniques are computationally intensive and time-consuming
during training, they are optimized to detect systems behaviors
or require domain expertise. To address the limitations of
the prior art, we propose an anomaly detection system using
gradient boosted machine (GBM) algorithms [7], which can
identify new patterns or features of CAN data frames that have
not been previously transmitted. The algorithm uses consec-
utively fitted models to map the attributes of the presented
data payloads to the attack and predicts final results. Gradient
boosting is a machine learning approach that can learn problems
in noisy, large datasets and their complex dependencies with
its prediction speed and accuracy [8]. A GBM algorithm uses
an ensemble approach (different formations) by combining
relatively large, weak, and simple classifiers to derive a strong
ensemble prediction. GBM builds trees in sequence and sums
the predictions from each tree for the final prediction [9].

In this paper, we present an anomaly-based detection system
using the extreme GBM (XGBoost), an optimized, compu-
tationally efficient, and flexible boosting algorithm for the
automotive network. XGBoost has an advantage over other
gradient boosting algorithms in terms of efficiency and speed,
which is essential for the accurate detection of intrusions. We
demonstrated the effectiveness of our approach using CAN data
signals from real vehicles comprising different data injection
attack scenarios. The performance of the model is also evalu-
ated on other open-source datasets using standard metrics, such
as recall, precision, false-positive rate (FPR), accuracy, and F1
score.

Our contributions are summarized as follows:
• design and implementation of intrusion detection tech-

nique using XGBoost to categorize anomalies in CAN data
payload;

• evaluation of the model on a real CAN dataset containing
different attack scenarios;

• comparative study of XGBoost-based anomaly detection
approach applied on various open-source datasets from
real vehicles;

• accuracy demonstration of the proposed model using stan-
dard performance metrics such as precision, recall, false-
positive rate (FPR), accuracy, and F1 score;

The remainder of the paper is organized as follows. We
provide an overview of CAN bus and XGBoost along with
a threat model in Section II. In Section III, we present the
proposed anomaly detection system using XGBoost and Sec-

tion IV includes the experimental results. Moreover, we review
related work in Section V and Section VI concludes the paper.

II. BACKGROUND

A. CAN Overview

The CAN bus is the most used internal network commu-
nication protocol in modern vehicles to interconnect safety-
critical ECUs. ECUs are called nodes on the network and can
broadcast signals relating to their functions via a single/dual
wire bus. Signals are transmitted in the clear, and the bus does
not implement any security mechanisms. Messages sent on the
bus are broadcast to all nodes as CAN signals do not contain
source nor destination addresses. The CAN bus implements
message arbitration based on the identifier (ID) field of the
transmitter’s message frame, which also indicates the message’s
priority. Lower IDs have a higher priority, and the protocol
detects collisions of signals. Dominant bits of a transmitted
signal are decoded as logic 0, and recessive bits are decoded
as logic 1. Each frame contains a data payload of up to 8 bytes
as dictated by the data length code (DLC) field. Figure 1 shows
the details of the CAN data frame.

The CAN bus is susceptible to cyber and physical attacks.
An adversary with a window of opportunity can permeate, ma-
nipulate, and perform different attacks on the communication
protocol that can affect traffic safety and endanger human lives
or property. Furthermore, the advent of connected autonomous
cars and their interconnection to the Internet and to their
environment has made vehicles an attractive target to cyber
attackers. An adversary can leverage this interconnectedness
to perform attacks that impedes the legitimate vehicular op-
eration, including signal injection, DoS, and spoofing attacks
targeting the safety-critical components of the vehicle [10]–
[12]. Therefore, a subject of significance to the automotive
industry is an appropriate and well-designed security protocol
for the connected car ecosystem.

B. Extreme Gradient Boosting Overview

Extreme gradient boosting [13] is an ensemble supervised
machine learning algorithm that uses decision trees as base es-
timators. Gradient boosting algorithms construct strong predic-
tion models by building weak models and combining them [9].
The decision trees in the model are sequentially built to enable
subsequent trees to minimize the errors in previous trees.

XGBoost is an efficient implementation of gradient boosting.
It is an ensemble of classification and regression trees, and the
trees are built using residual class labels. The algorithm is a
robust, distributed, and can be used for classification problems
such as anomaly detection. Given a dataset D = (xi, yi) with

S
O
F

ID
R
T
R

I
D
E

DLC Data CRC CRC
Del

ACK
Del

A
C
K

E
O
F

r

Arbitrattion Control Field Data CRC Field ACK Field

Fig. 1. CAN Data Frame

n samples, XGBoost uses additive functions fk to predict the
output yi given in equation 1 [14]:

ŷi =

m∑
k=1

fk(xi), fk ∈ F (1)

The regularized objective function is given by:

Lt =

n∑
i

l(ŷi, yi) +

K∑
k

Ωk(fk) (2)

where
∑n

i l(ŷi, yi) represents the loss function and∑K
k Ωk(fk) the regularization parameter. If y

(t)
i is the

prediction of yi at the t-th iteration, the loss function is
minimized by adding a base learner ft(xi) to the objective
function which is then given by:

Lt =

n∑
i

l(yi, ŷ
t−1
i) + ft(xi) + Ωk(fk) (3)

For a tree with a fixed structure, a derivative loss function for
a fixed base learner with K nodes is used to obtain an optimal
weight for the leaf nodes. The loss function is given by:

L̃t =
−1

2

K∑
j=1

(
∑

i∈Ij
gi)

2∑
i∈Ij

hi + λ
+ γK (4)

where γ is the pruning parameter and λ is a hyperparameter for
tuning the model. The first and second-order derivative solution
of the loss during previous iterations is given by gi and hi

respectively. Since it is impossible to explore every possible tree
structure, XGBoost uses a greedy approach to iteratively build a
tree [15]. By splitting the tree into left and right nodes, the split
that minimizes the loss is selected. If IL and IR represents the
instances of left and right nodes respectively, and I = IL∪ IR,
then the loss resulting from the split is given by:

Lsplit =
1
2

[
(
∑

i=IL
gi)

2

(
∑

i=IL
hi)+λ +

(
∑

i=IR
gi)

2

(
∑

i=IR
hi)+λ − (

∑
i=I gi)

2

(
∑

i=I hi)+λ

]
− γ (5)

XGBoost’s split finding algorithm makes it efficient for han-
dling data that may contain missing values. Also, the algorithm
has inbuilt cross-validation method that reduce overfitting [16].

C. Threat Model

In this paper, we assume an attacker that can eavesdrop,
intercept, replay, and transmit anomalous signals on the CAN
bus to disrupt or control the vehicle operation. The attack
scenarios considered in this paper are consistent with previ-
ously demonstrated CAN attacks that include packet injection,
spoofing, DoS, and bus-off attacks [2], [4], [17]. The goal of
the attacker is to compromise a victim ECU and influence the
normal operation mode of the vehicle by attacking the bus.
The attacker may gain access through the physical and remote
surface of the vehicle, and we assume they have analyzed the
vehicle behavior using reverse engineering techniques [18].
The remote attack surfaces connect the vehicle to external
networks and the environment. These surfaces are known to be
exploitable to compromise vehicular networks and take overall
control of vehicular operations [3].

Packet injection attacks involve the attacker transmitting data
frames that mimic a victim ECU frame to alter the internal
working of the vehicle. Randomly fabricated data injection or
fuzzy attacks cause the modification of the vehicle’s functions
under the attacker’s control. Also, benign messages can be
fabricated in the form of spoofing attacks to cause divergence of
ECUs from normal operating conditions. Packet injection can
lead to DoS attacks when the bus is flooded with high-priority
frames, making it unavailable for legitimate frame transmission.
The injected frames can have the same or different IDs and are
transmitted together to deaden the network. For malfunction
attacks, data fields of randomly selected ECUs are manipulated
to cause the vehicle to react abnormally.

III. PROPOSED XGBOOST BASED ANOMALY DETECTION

Anomaly detection is a process of identifying data patterns
with different features from normal behavior or instances.
This detection approach has been used in several application
domains with significant relevance and can detect anomalies
based on density, distance, or isolation. Anomaly-based detec-
tors that learn the patterns of CAN bus messages can signal
when an unexpected behavior is observed, which overcomes
limitations of signatures but introduces the new problem of false
positives. High classifier performance is critical for CAN in-
trusion prevention systems that automate response mechanisms
to alerts [19].

A. Overview of the Proposed Algorithm

The objective of the proposed method is to build a model
of the normal CAN bus behavior based on the observed pay-
loads of the data frame transmitted. Our approach to anomaly
detection in CAN bus communication relies on a supervised
machine learning algorithm to distinguish data frames that
do not conform to the typical payload values. The starting
point is to measure and understand the normal and abnormal
baseline behavior of the CAN bus traffic and then apply a binary
classification algorithm to determine if a specific data point is
anomalous or expected. This detection method is adaptive as it
can adjust to changes in the data payload of the CAN signal.

B. System Architecture

Figure 2 shows the conceptual framework of our approach,
composing four layers. The proposed framework starts with a
single data frame from the CAN bus signal, from which the
desired attributes such as the arbitration ID and data payload
are extracted. Since the data bytes in the DLC field represent
different signals [20], they are subdivided into eight distinct
parameters (D0 − D7), which are processed separately. In
addition, since our solution relies on a supervised learning
approach, an additional input is necessary to state whether the
input is a normal data point or an outlier. Thus, we use the
Flag field to indicate that the corresponding input message
is normal or an attack. Together with the message ID, these
parameters are transformed using a Data Filter, Data Converter,
and Normalizer. The processed dataset is then fed into a Data
Splitter, where it is split into training and test datasets ten
times using the 10-fold cross-validation method. In parallel,
the processed dataset undergoes a parameter tuning process.

CAN Bus
Traffic

ID D0 D1 D2 D3 D4 D5 D6 D7 Flag

Data Filter

NormalizerPr
e-

Pr
oc

es
si

ng

Data Converter

Processed Dataset Parameter Tuning

Train Test

. . . .

Train Model

Test Model

Store Metrics

Sp
lit

 D
at

as
et

 in
to

 1
0-

Fo
ld

s

R
ep

ea
t f

or
 E

ac
h

Fo
ld

Performance
Evaluation

Recall

Precision

F1 Score

Accuracy

FPR

Early Stopping

Fig. 2. CAN Bus Intrusion Detection System

Both tuned parameters and split datasets are used for model
training and testing, followed by an evaluation process.

We can categorize the levels of the proposed CAN bus
intrusion detection system (IDS) as follows:

1) Data Pre-processing: The data filter module is used as
the first step to transform the parameters obtained from the
CAN frame. It removes any row from the dataset which has
a missing value. Since the XGBoost model can only accept
numerical vectors as input, the module is followed by a data
converter that converts the attribute to corresponding integer
values. These attributes are then normalized using the min-
max function. The min-max normalization technique is used
to speed up the learning phase before fitting to the model. It
also assigns an equal weight to all attributes by performing a
linear transformation on the data, resulting in the transformed
attributes falling into the range of [0,1]. This transformation
helps in preserving the relationships among the extracted at-
tributes of the CAN dataset before feeding it to the model.

2) Hyperparameter Tuning: Hyperparameters are specific
values or weights that influence an algorithm’s learning process.
A large variety of hyperparameters is required to develop
an XGBoost model. We optimized frequently used XGBoost
hyperparameters, such as alpha, learning rate, and max depth, to
enhance prediction accuracy. We used the grid search technique
to find the optimal parameter values for each dataset and
examine every possible combination of parameter values on
the grid. This technique returns the parameters that yield the
best prediction for the given dataset [21]. A summary of the
values obtained for the hyperparameters is shown in Table I.

3) Model Training and Validating: In this stage, we train our
intrusion-detection model using the processed dataset. How-
ever, training alone does not ensure that the model will perform
well when fed data that has not been seen before. Splitting the
dataset in an 80:20 or 70:30 ratio at random may result in a

TABLE I
PARAMETER VALUES OBTAINED USING GRID SEARCH

Parameter Usage Car-hacking Dataset Survival Dataset (Sonata) Survival Dataset (Soul) Survival Dataset (Spark)
DoS Fuzzy RPM Gear Flooding Fuzzy Malfunction Flooding Fuzzy Malfunction Flooding Fuzzy Malfunction

alpha Improve model speed 5 0 1 0 0 0 0 0 0 0 0 0 0
colsample bytree Improve Overfitting 0.8 0.3 0.1 0.3 0.1 0.3 0.3 0.1 0.5 0.2 0.1 0.5 0.3

learning rate
Optimize the chances to 0.3 0.1 0.05 0.3 0.01 0.01 0.01 0.01 0.1 0.1 0.01 0.3 0.05reach the best optimum

max depth
Control model performance 10 6 6 6 1 9 6 1 6 5 1 6 6and complexity

n estimators
Determine the number of 100 100 100 100 100 100 100 100 100 100 100 100 100boosting rounds

min child weight
Control the complexity of 3 1 1 1 1 1 3 1 1 1 1 1 3the trees

model with a high bias since we would overlook information
about the data that we have not utilized for training [22]. The
10-fold cross-validation approach is used to decrease biases.
This approach divides the dataset into ten groups, of which nine
are used for training, and the last one is used for validation. The
model is trained and tested ten times until all groups are utilized
to test the model. This method assures that every observation
from the original dataset is included in the model’s training
and testing. We also implement an early stopping mechanism
to avoid overfitting the model: when the model’s performance
on a validation dataset starts to deteriorate, the early stopping
approach terminates it, avoiding overtraining.

4) Performance Evaluation: We evaluate our model on dif-
ferent attack scenarios such as DoS, fuzzy, RPM, and spoofing
using standard metrics such as accuracy A, precision P , recall
R, F1 score, and false positive rate FPR. The number of
correct predictions divided by the total number of observations
yields accuracy, calculated as A = TN+TP

TP+FP+TN+FN , where
TN , TP , FN , FP are the true negative, true positive, false
negative, and false positive values, respectively. The precision
P = TP

(TP+FP) is the correctness of positive predictions.
The recall R = TP

(TP+FN) is the fraction of correct attack
predictions in the attack class. The F1 score summarizes a
model’s prediction effectiveness by averaging accuracy and
recall, computed as F1 = 2×(R×P)

R+P . FPR is the number of
inaccurate positive findings in all the negative samples available
during the test and is estimated by FPR = FP

(FP+TN) . In each
cross-validation fold, these parameters are calculated, and the
final evaluation result is the mean of the values obtained.

IV. EXPERIMENTAL VALIDATION

In this section, we discuss the datasets used to validate our
detection model and the outcome of our experimentation.

A. Dataset Analysis

To evaluate the efficiency of our proposed IDS, we used four
real-world CAN datasets from the Hacking and Countermea-
sure Research Lab [23]. The datasets consist of normal vehicle
operation and the following attacks: DoS attack, Fuzzy attack,
RPM, and gear spoofing attacks. The DoS attack is conducted
by injecting a message with ID 0000 every 0.3 milliseconds.
Data frames with random IDs and random data values are
released to the CAN bus approximately every 0.5 milliseconds
for the fuzzy attack, while CAN frames containing IDs of gear
and RPM are used to spoof the bus every millisecond.

We also used the survival analysis dataset [24], which
contains three separate datasets recorded from three different
vehicles: a Hyundai YF Sonata, a KIA Soul, and a Chevrolet
Spark. The datasets contain flooding, fuzzy, and malfunction
attacks. Consistent with the car-hacking dataset DoS attack,
the flooding attack injects messages with ID 0000. The fuzzy
attack injects randomized CAN packets with IDs ranging from
0000 to 07FF every 0.0003 seconds. The malfunction attack
manipulates data fields of targeted IDs.

For each message, the following parameters are provided: ID,
timestamp, data length code, and the frame payload (consisting
of 8 data bytes). In addition, a flag value was assigned to
indicate whether the message was a genuine message (R) or
an attack frame (T). Tables II and III summarize the datasets.

TABLE II
SUMMARY OF CAR-HACKING DATASET

Attack Type Normal Messages Injected Messages Total Messages
DoS 3,078,250 587,521 3,665,771

Fuzzy 3,347,013 491,847 3,838,860
Gear Spoofing 3,845,890 594,252 4,443,142
RPM Spoofing 3,966,805 654,897 4,621,702

B. Experimental Results and Time Complexity Analysis

We pre-processed each dataset and obtained nine features:
the CAN ID and eight subfeatures from the data bytes payload.
We excluded the DLC and timestamp features of the datasets
since the values did not add any advantage for predicting
anomalies in our approach. We converted each data byte from
hex to its equivalent integer representation. Before feeding the
pre-processed dataset into the model, we tune each param-
eter and split the dataset for training and evaluation using
the cross-validation process. We evaluated our model using
accuracy, false positive rate, recall, precision, and F1 score.
The experimental results obtained using the car-hacking and
survival analysis dataset are summarized in Table IV and Table
V, respectively.

One of the key purposes of building an anomaly detection
system is to classify attack messages from benign signals. For
this reason, a model should have low false-positive and false-
negative rates. A high precision value refers to a low false-
positive rate, and a high recall is associated with a low false-
negative rate [25]. Table IV shows the algorithm achieved high
recall values of 1 and 0.99 for DoS and fuzzy, respectively
while obtaining approximately 0.9 for spoofing attacks. The
precision of the model is over 98% for all attacks and a perfect

TABLE III
SUMMARY OF SURVIVAL ANALYSIS DATASET

Attack Type Total Messages Total Messages Total Messages
(Sonata) (Soul) (Spark)

Flooding 149,547 181,901 120,570
Fuzzy 135,670 249,990 65,665

Malfunction 132,651 173,436 79,787

precision of 100% for RPM spoofing attacks. Moreover, a lower
value of FPR, 0.0029 in DoS and 0 for all other attacks, shows
the system’s ability to identify attacks efficiently. In addition,
Table IV shows an F1 score of over 0.95 in all the attacks
scenarios. Such a high value for the F1 score indicates that the
model can accurately classify every observation. Furthermore,
the model achieved above 0.99 accuracies for each attack,
validating the prediction effectiveness of the proposed model.
Similarly, Table V shows a high percentage of recall, precision,
F1 score, accuracy, and low FPR for each dataset. On average,
the proposed XGBoost anomaly detection model achieved over
99% accuracy on different CAN traffic datasets.

For our algorithm, preprocessing the data incurs a time
complexity of O(n). If n is the number of samples, t is
the number of trees, h is the height of the trees, and S is
the number of entries with non-missing values, training with
XGBoost incurs O(thSlogn) [26]. Since we utilize grid search
to tune the hyperparameters, the time complexity of the model
training increases as Grid Search goes through each possible
combination of hyperparameters. To make the process faster,
we parallelize the process with the n jobs argument, which
uses each core of a multicore machine and splits the time
complexity by n [27]. However, since the data preprocessing
and training are completed offline, these stages do not incur
a cost during the actual intrusion detection stage. During
detection, the XGBoost algorithm takes O(th) for each new
CAN payload, while preprocessing the new payload takes O(1)
constant time.

TABLE IV
SUMMARY OF XGBOOST MODEL EVALUATION ON CAR-HACKING

DATASET

Attack
Metrics Recall Precision F1 Accuracy FPR

DoS 1.0000 0.9852 0.9926 0.9976 0.0029
Fuzzy 0.9926 0.9999 0.9963 0.9990 0.0000

RPM Spoofing 0.9000 1.0000 0.9474 0.9858 0.0000
Gear Spoofing 0.9006 0.9982 0.9469 0.9864 0.0000

V. RELATED WORK

Several studies have proposed techniques for anomaly de-
tection in CAN bus from a machine learning (ML) point of
view [28], [29]. Some of the approaches in the literature include
statistics-based adopting local outlier factor [29], cumulative
sum change point [30], support vector machines [31], and
neural networks [32].

Islam et al. [33] proposed a detection algorithm using graph
properties with statistical tests. The algorithm transforms the
CAN messages into a graph structure followed by a statistical
analysis, such as computing threshold and chi-square values, to
detect the abnormalities within the graphs. Olufowobi et al. [30]

explored the CAN message frequencies and detected abrupt
changes in the frequencies using a cumulative sum change-
point algorithm. Taylor et al. [34] propose an IDS for CAN
bus using long short-term memory (LSTM) classifier to predict
the next message and significant deviation from the predicted
word. The approach also indicates whether an actual message
is considered an attack. Other researchers have leveraged this
approach to also detect anomalies in CAN bus [28], [35], [36].

Seo et al. [37] introduced a generative adversarial net-based
intrusion detection system, a deep-learning model, trained using
solely attack-free data to boost the likelihood of detecting any
unknown attack not seen during the training phase. D’Andrada
et al. [38] presented a real-time isolation forest-based detection
approach implemented using hardware descriptive language,
based on a binary decision tree suitable for hardware, while
Paul and Islam [39] used the binary classification of the
artificial neural network to detect legitimate and compromised
messages. Islam et al. [40] proposed a Gaussian naive Bayes
method to identify a wide variety of CAN bus attacks in a
short period by combining common graph characteristics with
PageRank-related features. Furthermore, Li et al. [41] proposed
an improved support vector domain description (SVDD) based
detection system. The authors addressed the limitation of tra-
ditional SVDD by incorporating Markov chain to adapt related
vehicle features and Gaussian kernel function to improve de-
tection accuracy and reduce model redundancy. However, these
detection methods are computationally intensive to efficiently
detect anomalies and are often not practical for safety-critical
system mainly due to speed (latency and throughput). Because
of its learning algorithm-based and interpretable techniques for
regression and classification [7], the XGBoost competitive and
highly robust trees approach has been employed to best predict
anomalous events in the CAN bus. XGBoost offers several
parameters used to regulate model speed and complexity to
get a better prediction in a shorter amount of time. Moreover,
we used additional features such as grid search, early stopping,
and cross-validation to enhance the performance of our model.

VI. CONCLUSION

This paper presents an anomaly detection method for the
CAN bus using the XGBoost learning algorithm. The proposed
method incorporates the CAN IDs and the data payload of the
CAN frame into the XGBoost algorithm to predict anomalies in
the bus operation. The optimum performance of the model was
obtained by performing individual parameter tuning and cross-
validation, followed by early stopping rounds. Furthermore,
we evaluated the proposed model on open-source real dataset
collected from three different vehicles. The evaluation results
demonstrate the high detection performance of the proposed
model. In future work, we will fine-tune the model to include
more features of the CAN data frame for better attack coverage.
Moreover, a comparative study with other machine learning-
based detection approaches will be conducted.

REFERENCES

[1] H. Olufowobi and G. Bloom, “Chapter 16 - Connected Cars:
Automotive Cybersecurity and Privacy for Smart Cities,” in Smart
Cities Cybersecurity and Privacy, D. B. Rawat and K. Z. Ghafoor,

TABLE V
SUMMARY OF XGBOOST MODEL EVALUATION ON SURVIVAL ANALYSIS DATASET

Attack
Metrics Sonata Soul Spark

Recall Precision F1 Accuracy FPR Recall Precision F1 Accuracy FPR Recall Precision F1 Accuracy FPR

Flooding 0.9000 1.0000 0.9474 0.9783 0.0000 0.9000 1.0000 0.9474 0.9818 0.0000 0.9000 1.0000 0.9474 0.9813 0.0000
Fuzzy 0.9908 0.9998 0.9953 0.9998 0.0000 0.9958 0.9999 0.9978 0.9993 0.0000 0.92 0.9734 0.9460 0.9907 0.0024

Malfunction 1.0000 0.9992 0.9996 0.9999 0.0001 0.9322 1.0000 0.9649 0.9971 0.0000 1.0000 0.9980 0.9990 0.9998 0.0002

Eds. Elsevier, Jan. 2019, pp. 227–240. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/B9780128150320000160

[2] S. Checkoway, D. Mccoy, B. Kantor, D. Anderson, H. Shacham, S. Sav-
age, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno, “Comprehensive
experimental analyses of automotive attack surfaces,” in USENIX SECU-
RITY. USENIX, 2011.

[3] C. Miller and C. Valasek, “Remote exploitation of an unaltered passenger
vehicle.” BlackHat USA, 2015.

[4] K.-T. Cho and K. G. Shin, “Error handling of in-vehicle networks makes
them vulnerable,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, 2016, pp. 1044–1055.

[5] S. Hounsinou, M. Stidd, U. Ezeobi, H. Olufowobi, M. Nasri, and
G. Bloom, “Vulnerability of controller area network to schedule-based
attacks,” in 2021 IEEE Real-Time Systems Symposium (RTSS). IEEE,
2021, pp. 495–507.

[6] G. Bloom, “Weepingcan: A stealthy can bus-off attack,” in Workshop on
Automotive and Autonomous Vehicle Security (AutoSec), 2021, p. 25.

[7] J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of statistics, pp. 1189–1232, 2001.

[8] A. Natekin and A. Knoll, “Gradient boosting machines, a tutorial,”
Frontiers in neurorobotics, vol. 7, p. 21, 2013.

[9] B. A. Tama and K.-H. Rhee, “An in-depth experimental study of anomaly
detection using gradient boosted machine,” Neural Computing and Ap-
plications, vol. 31, no. 4, pp. 955–965, 2019.

[10] H. Olufowobi, C. Young, J. Zambreno, and G. Bloom, “Saiducant:
Specification-based automotive intrusion detection using controller area
network (can) timing,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 2, pp. 1484–1494, 2020.

[11] C. Young, J. Zambreno, H. Olufowobi, and G. Bloom, “Survey of
automotive controller area network intrusion detection systems,” IEEE
Design & Test, vol. 36, no. 6, pp. 48–55, 2019.

[12] J. Liu, S. Zhang, W. Sun, and Y. Shi, “In-vehicle network attacks
and countermeasures: Challenges and future directions,” IEEE Network,
vol. 31, no. 5, pp. 50–58, 2017.

[13] T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho, K. Chen
et al., “Xgboost: extreme gradient boosting,” R package version 0.4-2,
vol. 1, no. 4, pp. 1–4, 2015.

[14] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[15] “Unveiling mathematics behind xgboost,” KD Nuggets.
[Online]. Available: https://www.kdnuggets.com/2018/08/
unveiling-mathematics-behind-xgboost.html

[16] “Xgboost,” Geeks for Geeks. [Online]. Available: https://www.
geeksforgeeks.org/xgboost/

[17] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage,
“Experimental security analysis of a modern automobile,” in 2010 IEEE
Symposium on Security and Privacy, May 2010, pp. 447–462.

[18] U. Ezeobi, H. Olufowobi, C. Young, J. Zambreno, and G. Bloom, “Re-
verse engineering controller area network messages using unsupervised
machine learning,” IEEE Consumer Electronics Magazine, 2020.

[19] H. Olufowobi, S. Hounsinou, and G. Bloom, “Controller area
network intrusion prevention system leveraging fault recovery,” in
Proceedings of the ACM Workshop on Cyber-Physical Systems Security
amp; Privacy, ser. CPS-SPC’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 63–73. [Online]. Available:
https://doi.org/10.1145/3338499.3357360

[20] M. E. Verma, R. A. Bridges, J. J. Sosnowski, S. C. Hollifield, and M. D.
Iannacone, “Can-d: A modular four-step pipeline for comprehensively
decoding controller area network data,” arXiv preprint arXiv:2006.05993,
2020.

[21] “Hyperparameter tuning. grid search and random search,” YOUR DATA
TEACHER. [Online]. Available: https://www.yourdatateacher.com/2021/
05/19/hyperparameter-tuning-grid-search-and-random-search/

[22] “Why and how to cross validate a model?” Towards
Data Science. [Online]. Available: https://towardsdatascience.com/
why-and-how-to-cross-validate-a-model-d6424b45261f#

[23] H. Lee, S. H. Jeong, and H. K. Kim, “OTIDS: A Novel Intrusion
Detection System for In-vehicle Network by Using Remote Frame,” in
2017 15th Annual Conference on Privacy, Security and Trust (PST),
vol. 00, Aug. 2017, pp. 57–5709.

[24] M. L. Han, B. I. Kwak, and H. K. Kim, “Anomaly intrusion detection
method for vehicular networks based on survival analysis,” Vehicular
communications, vol. 14, pp. 52–63, 2018.

[25] “Precision-recall,” Scikit Learn. [Online]. Available: https://scikit-learn.
org/stable/auto examples/model selection/plot precision recall.html#

[26] “Time complexity for different machine learning algorithms,”
Marco Virgolin. [Online]. Available: https://marcovirgolin.github.io/
extras/details time complexity machine learning algorithms/

[27] “Gridsearchcv and time complexity,” Data Science. [On-
line]. Available: https://datascience.stackexchange.com/questions/97013/
gridsearchcv-and-time-complexity

[28] M. D. Hossain, H. Inoue, H. Ochiai, D. Fall, and Y. Kadobayashi, “Lstm-
based intrusion detection system for in-vehicle can bus communications,”
IEEE Access, vol. 8, pp. 185 489–185 502, 2020.

[29] J. Ning, J. Wang, J. Liu, and N. Kato, “Attacker identification and intru-
sion detection for in-vehicle networks,” IEEE Communications Letters,
vol. 23, no. 11, pp. 1927–1930, 2019.

[30] H. Olufowobi, U. Ezeobi, E. Muhati, G. Robinson, C. Young, J. Zam-
breno, and G. Bloom, “Anomaly detection approach using adaptive
cumulative sum algorithm for controller area network,” in Proceedings
of the ACM Workshop on Automotive Cybersecurity, 2019, pp. 25–30.

[31] O. Avatefipour, A. S. Al-Sumaiti, A. M. El-Sherbeeny, E. M. Awwad,
M. A. Elmeligy, M. A. Mohamed, and H. Malik, “An intelligent secured
framework for cyberattack detection in electric vehicles’ can bus using
machine learning,” IEEE Access, vol. 7, pp. 127 580–127 592, 2019.

[32] M. Kang and J. Kang, “A novel intrusion detection method using deep
neural network for in-vehicle network security,” in 2016 IEEE 83rd
Vehicular Technology Conference (VTC Spring), 2016, pp. 1–5.

[33] R. Islam, R. U. D. Refat, S. M. Yerram, and H. Malik, “Graph-
based intrusion detection system for controller area networks,” IEEE
Transactions on Intelligent Transportation Systems, 2020.

[34] A. Taylor, S. Leblanc, and N. Japkowicz, “Anomaly detection in auto-
mobile control network data with long short-term memory networks,”
in 2016 IEEE International Conference on Data Science and Advanced
Analytics (DSAA), 2016, pp. 130–139.

[35] S. Longari, D. H. N. Valcarcel, M. Zago, M. Carminati, and S. Zanero,
“Cannolo: An anomaly detection system based on lstm autoencoders for
controller area network,” IEEE Transactions on Network and Service
Management, vol. 18, no. 2, pp. 1913–1924, 2020.

[36] S. Tariq, S. Lee, H. K. Kim, and S. S. Woo, “Can-adf: The controller area
network attack detection framework,” Computers & Security, vol. 94, p.
101857, 2020.

[37] E. Seo, H. M. Song, and H. K. Kim, “Gids: Gan based intrusion detection
system for in-vehicle network,” in 2018 16th Annual Conference on
Privacy, Security and Trust (PST). IEEE, 2018, pp. 1–6.

[38] L. F. P. D’Andrada, P. F. de Araujo-Filho, and D. R. Campelo, “A real-
time anomaly-based intrusion detection system for automotive controller
area networks,” in Anais do XXXVIII Simpósio Brasileiro de Redes de
Computadores e Sistemas Distribuı́dos. SBC, 2020, pp. 658–671.

[39] A. Paul and M. R. Islam, “An artificial neural network based anomaly
detection method in can bus messages in vehicles,” in 2021 International
Conference on Automation, Control and Mechatronics for Industry 4.0
(ACMI). IEEE, 2021, pp. 1–5.

[40] R. Islam, M. K. Devnath, M. D. Samad, and S. M. J. Al Kadry, “Ggnb:
Graph-based gaussian naive bayes intrusion detection system for can bus,”
Vehicular Communications, vol. 33, p. 100442, 2022.

[41] X. Li, H. Zhang, Y. Miao, S. Ma, J. Ma, X. Liu, and K.-K. R. Choo,
“Can bus messages abnormal detection using improved svdd in internet
of vehicles,” IEEE Internet of Things Journal, vol. 9, no. 5, 2022.

