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ABSTRACT
The Internet of Vehicles (IoV) is envisioned to improve road safety,
reduce traffic congestion, and minimize pollution. However, the
connectedness of IoV entities increases the risk of cyber attacks,
which can have serious consequences. Traditional intrusion detec-
tion systems (IDS) transfer large amounts of raw data to central
servers, leading to potential privacy concerns. Also, training IDS
on resource-constrained IoV devices generally can result in slower
training times and poor service quality. To address these issues, we
propose a split learning-based privacy-preserving IDS that deploys
IDS on edge devices without sharing sensitive raw data. In addi-
tion, we propose a regret minimization-based adaptive offloading
technique that reduces the training time on resource-constrained
devices. Our approach effectively detects anomalous behavior while
preserving data privacy and reducing training time, making it a
practical solution for IoV. Experimental results show the effective-
ness of our approach and its potential to enhance the security of
the IoV network.

CCS CONCEPTS
• Security and privacy→ Intrusion detection systems; • Com-
puting methodologies→ Neural networks; • Theory of com-
putation → Online learning algorithms.
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1 INTRODUCTION
The Internet of Vehicles (IoV) connects autonomous vehicles, sen-
sor networks, embedded devices, and intelligent transportation
systems to the Internet to support vehicular applications. These
applications generate and share various types of information, in-
cluding vehicle telemetry, environment, and location data. In doing
so, they enable a wide range of new services to improve the safety,
efficiency, mobility, and sustainability of vehicles and infrastruc-
tures [1]. Increasingly, the interconnectedness of IoV systems to the
Internet extends the attack vectors and directions for exploitation to
adversaries. IoV has become highly vulnerable to malicious adver-
saries due to reliance on wireless communication technologies with
potential entry points, multiple communication endpoints, and the
lack of security standards. An attack on compromised systems has
the potential for personal harm or physical damage. Prior works
have posited the importance of securing the IoV because a system
failure directly affects user safety [15, 16]. A lack of adequate secu-
rity measures can result in catastrophic consequences, including
loss of life. Also, the data generated by IoV devices is often sensitive
and requires privacy protection.

Previous works have explored attack mitigation methods in IoV,
including encryption, authentication, and authorization protocols
that prevent unauthorized access to IoV communication data and
network resources [5, 13]; the blockchain technology providing
tamper-proof records for transactions to avoid data tampering and
identity theft [11]; and intrusion detection systems (IDS) [17]. An
IDS offers real-timemonitoring and identifies potential threats early,
enabling entities in the IoV to respond accordingly and prevent
damage to the data and infrastructure. However, traditional IDS
require large amounts of data to be transferred to a central server
for processing, creating vulnerabilities that attackers can exploit.
Split learning (SL) is a privacy-preserving machine learning (ML)
technique that allows a model to be trained without sharing the
raw data with the central server. The key idea of SL is that the
model is split into two parts: the client device, such as the vehicles,
that performs local computation on its data, and the server, such as
the roadside unit (RSU) and edge devices, that uses the extracted
features to update the global model. This approach enables training
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ML models on decentralized data without transferring or sharing
sensitive data.

This paper proposes a SL-based privacy-preserving intrusion
detection system for IoV data communication to detect anoma-
lous network behavior. Our proposed approach uses a client-server
architecture, where client-side models are trained on local data
sources, and the server-side model is trained on aggregated, en-
crypted updates from the client-side models. This decentralized
training approach enables the IDS to maintain data privacy while
still providing high-quality detection of intrusion attempts. To im-
prove the efficiency of the split learning process, we present an adap-
tive training process that dynamically chooses the optimal strategy
that minimizes delay using a regret minimization technique. To eval-
uate the effectiveness of our approach, we use open-source datasets
representing intra- and inter-vehicular networks and assess our
technique’s accuracy, efficiency, and scalability. Moreover, we com-
pare with baseline methods to determine suitability for practical
deployment in real-world IoV environments. Experimental results
show that our proposed approach can effectively detect anomalous
behavior in the IoV network while preserving the privacy of the
data. The main contributions of this paper are:

• We develop and implement a SL-based IDS using different
deep neural networks to address concerns around traditional
IDS approaches’ scalability and efficiency to detect anom-
alies.

• We use the proposed approach to protect IoV privacy require-
ments feasibly and its influencing characteristics, including
resource utilization and accuracy, to detect various categori-
cal attacks.

• We optimize the SL-based training process by leveraging a
regret minimization technique to reduce the overall latency
of the training process.

• We prototype and evaluate the performance using open-
source datasets and posit that the proposed approach can
improve detection experience over time while adapting to
the rapidly changing IoV environments.

2 BACKGROUND
In this section, we provide some background about IoV and the SL
approach used for detecting anomalies in IoV.

2.1 Internet of vehicles (IoV)
The IoV is an extension of the Internet of Things (IoT) that en-
ables connected vehicles, road infrastructure, and pedestrians to
exchange information to create an intelligent transportation system.
An IoV network consists of two sub-networks—an intra-vehicular
network and an inter-vehicular network.

2.1.1 Intra-vehicular Network: The intra-vehicle network of mod-
ern vehicles consists of a controller area network (CAN) bus and
several electronic control units (ECUs). The CAN bus is a serial
broadcast communication protocol that provides a medium for the
ECUs to exchange messages. Each ECU is linked to a specific in-
vehicle component, such as the braking system, engine control
module, and body controller. The ECU shares the state of the com-
ponent it is associated with by transmitting signals related to its
functions via CAN frames. Each frame has a unique identifier (ID)

and contains a data payload of up to 8 bytes where the signals being
transmitted are encoded. The actual size of the payload is indicated
in the data length code field. CAN messages with lower IDs are
considered to have higher priority and are transmitted first on the
bus to ensure timely delivery of the highest priority frames.

2.1.2 Inter-vehicular network: IoV inter-vehicular communication
(IVC) involves connecting vehicles to other IoV entities, includ-
ing other vehicles, RSUs, intelligent devices, and the cloud, to en-
able more efficient and safer transportation. IVC allows vehicles to
exchange information in real-time using several communication
protocols such as 4G/LTE, 5G/6G, WiFi, Bluetooth, worldwide inter-
operability for microwave access (WiMAX), and WAVE. One of the
most common protocols is Dedicated Short-Range Communication
(DSRC), which is ideal for high-speed communication, making it
suitable for emergency situations and collision avoidance. These
protocols enable IVC with their unique strengths that allow data
transmission between different IoV entities.

The rapid growth of interconnected smart entities in the IoV
ecosystem has significantly increased security risks. The communi-
cation network security vulnerabilities, coupled with the lack of se-
curity measures in the CAN bus that protects exchanged messages,
make it an attractive target for cyber attacks [19]. These attacks
can take various forms, such as eavesdropping, injection, denial-of-
service (DoS), distributed DoS (DDoS), and spoofing attacks, leading
to disruption of the regular operations of safety-critical vehicular
components. These security risks pose significant threats to the
safety and security of the IoV ecosystem.

2.2 SL Approach
Split learning is a privacy-preserving method for training ML mod-
els on distributed data sources. In this approach, a client retains
its local dataset and shares only a portion with an edge server,
reducing the amount of data transferred and protecting sensitive
information. During training, the model goes through forward
propagation (FP) and backward propagation (BP) phases, with the
client-side model trained locally until a designated cut layer, 𝑙𝑐 , is
reached. At this point, the client sends the output of the cut layer,
known as the smashed data, to the server to complete the FP phase,
while the server starts the BP phase until the cut layer and sends
the server-side smashed gradients to the client to complete the BP
phase. This split approach reduces the training latency and compu-
tational burden while ensuring data privacy and security, making
it an attractive solution for IoT and IoV systems.

2.3 Regret Minimization
Regret minimization is a strategic approach aimed at making deci-
sions that minimize the potential for future regrets. Regrets refer
to the additional costs incurred by a network when processing the
data. The core principle behind regret minimization involves care-
fully considering all potential outcomes and the various decisions
that precede any action. By considering these possible outcomes,
individuals or systems can make more informed choices that max-
imize benefits while minimizing negative consequences. Regret
minimization takes into consideration the delays that might occur
when transferring data across different points within the network
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Figure 1: Overview of split learning in IoV

architecture. Regret minimization, having an inherent focus on op-
timizing choices, offers flexibility that can be particularly beneficial
in dynamic contexts. This flexibility is evident when considering
data offloading strategies, where the regret minimization approach
can dynamically select between processing the data locally or of-
floading it on the server based on real-time considerations. The
primary factor in this determination is the extent of the delay, as it
serves as a cornerstone for making well-informed decisions that
align with network efficiency and overall performance.

3 THREAT MODEL
We examine the following threat vectors to better understand the
landscape of vulnerabilities in IoV.

3.1 Intra-Vehicular Communication
We assume an adversary can access the CAN bus through an un-
patched vulnerability that allows the adversary to compromise the
ECU modules in the autonomous vehicle. Also, this vulnerability
enables the attacker to eavesdrop, analyze the CAN messages, and
inject malicious messages to cause malfunction or damage to the
vehicular system. To evaluate the effectiveness of the proposed
IDS for intra-vehicular communication, we consider the following
attack types:

3.1.1 DoS attack: An attacker floods the CAN bus with a high
volume of high-priority messages, causing congestion that disrupts
the regular communication of legitimate ECUs.

3.1.2 Fuzzy attack: This sophisticated injection attack involves
subtle changes to legitimate message content to exploit a network
vulnerability. An attacker may use this technique to alter the be-
havior of the vehicle system to cause malfunction.

3.1.3 Spoofing attack: An attacker sends fabricated messages to
the CAN bus, pretending to be a legitimate ECU to inject malicious
messages or to manipulate the vehicle system. We investigate two
types of spoofing attacks: gear and RPM spoofing. These attacks
involve an attacker sending falsified messages to the CAN bus

that inaccurately reports the vehicle’s current gear or RPM of the
vehicle’s engine, respectively.

3.2 Inter-Vehicular Communication
We assume an adversary can access the wireless communication
channel used by the vehicles to exchange messages, such as DSRC
or Vehicle-to-Everything (V2X) protocols. The adversary could
use various methods to compromise the communication channel,
including jamming, spoofing, and interception. To evaluate the ef-
fectiveness of the proposed IDS for inter-vehicular communication,
we consider the following attack types:

3.2.1 Portscan attack: A port scanning attack involves an adver-
sary scanning the communication network for open ports or ser-
vices to identify potential vulnerabilities that could be exploited to
gain access to the network.

3.2.2 DoS attack: Similar to CAN DoS, in inter-vehicular commu-
nication, a DoS attack can be launched to flood the IoV network
with messages.

3.2.3 DDoS attack: The goal of DDoS is the same as DoS, which
is to overload the target’s resources with traffic and disrupt its
availability. However, the difference between DoS and DDoS at-
tacks is the number of sources used to launch the attack. In DoS,
a single or a few malicious sources are used to launch the attack,
whereas, in DDoS, an attacker uses multiple sources, typically from
compromised devices, to launch a coordinated attack.

4 PRIVACY-PRESERVING IDS FOR IOV
FRAMEWORK

By providing the ability for nodes to retain their data, SL offers
an opportunity to build an IDS for IoV that is both effective and
privacy-preserving. We illustrate the SL approach adapted to the
IoV environment using the vehicular network shown in Fig. 1. The
network consists of vehicles as client devices and RSUs as edge
servers with significant computing resources. In contrast to the
RSUs, we assume the clients have limited computation capabilities
but can access the edge servers via wireless access technologies.
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The proposed IDS includes a data preprocessing stage that trans-
forms raw IoV data obtained from realistic network scenarios into
usable formats. Following the preprocessing stage, the IDS utilizes
a portion of the dataset for training neural network models (Convo-
lutional Neural Network (CNN), Long Short-Term Memory (LSTM),
and Gated Recurrent Unit (GRU) Network). Next, the performance
of the trained models is evaluated using a separate testing set. In
this section, we further explain the details of the proposed IDS.

4.1 Dataset
We utilized two open-source datasets representing intra- and inter-
vehicular networks to train and test our model. For intra-vehicular
networks, we used a CAN dataset provided by the Hacking and
Countermeasure Research Lab [10]. The dataset contains messages
logged from the OBD-II port of a vehicle, containing both benign
and malicious payloads that compromise the operations of au-
tonomous vehicles via the CAN bus. The attacks include DoS, fuzzy,
and spoofing attacks. In addition, the dataset provides information
about the timestamp, CAN identifier, data length code, a maximum
of 8 bytes of data, and a flag indicating whether the message is
benign or malicious. For inter-vehicular networks, we utilized the
CICIDS2017 dataset, which is a real-time network dataset for in-
trusion detection [14]. The CICIDS2017 dataset consists of over
80 network traffic features and provides data samples containing
benign network traffic and common network attacks, such as DoS,
DDos, and Port scan attacks.

4.2 Data preprocessing
In the preprocessing stage, the CAN and CICIDS2017 datasets un-
dergo a comprehensive filtering process to eliminate any rows con-
taining missing values. In addition, during this step, the datasets
are examined for infinite numbers, and any positive infinite values
are substituted with a large positive value. Similarly, infinite nega-
tive values are replaced with a small negative value. After filtering,
a data converter step is applied, which involves normalizing the
feature values using a min-max scaler, as the feature values are
typically dispersed over a wide range. Furthermore, to reduce the
dependence of the model on the order of the data samples and
prevent overfitting, we randomly shuffle the training data.

4.3 Neural Network Models
4.3.1 CNN. ACNN [12] is a class of deep learningmodels designed
specifically for processing inputs with a grid-like structure, such as
images. CNN comprises three layers: convolutional, pooling, and
fully connected. The first two layers are used for feature extraction,
whereas the last layer maps the features to the final output. The
convolutional layer identifies patterns and features in the input
data by performing a mathematical operation called convolution.
Next, a rectified linear unit (ReLU) activation function is applied to
the output of the convolutional layer to introduce nonlinearity into
the model since many real-world problems cannot be accurately
modeled solely using linear functions. The pooling layer performs
downsampling of the output received from the convolutional layer,
which reduces the overfitting of the CNN model. Finally, the fully
connected layer transforms the output of the convolutional and
pooling layers into a format that can be used for classification. Our

proposed architecture consists of two convolutional layers, each
followed by a pooling and two fully connected layers.

4.3.2 LSTM. Gradient-based neural network architectures are sus-
ceptible to issues such as exploding or vanishing gradients, which
can hinder the learning process [8]. To mitigate these problems,
LSTM networks incorporate several techniques. Firstly, to address
the exploding gradient problem, LSTMuses gradient clipping, which
involves constraining the range of gradients during training. In ad-
dition, LSTM addresses the vanishing gradient problem by utilizing
a memory cell that retains information over multiple time steps
and selectively updates or forgets the information as needed. This
memory cell is controlled by three gate units—the input gate, 𝑖 , the
forget gate, 𝑓 , and the output gate, 𝑜—which regulate the flow of
information into and out of the cell. These techniques make LSTM
a powerful tool for processing sequential data. These gates at each
time step 𝑡 , are given by:

𝑖𝑡 = 𝜎 (𝑊𝑖 .[ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑖 ) (1)

𝑓𝑡 = 𝜎 (𝑊𝑓 .[ℎ𝑡−1, 𝑥𝑡 ] + 𝑏 𝑓 ) (2)

𝑜𝑡 = 𝜎 (𝑊𝑜 .[ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑜 ) (3)

where 𝑊𝑖 , 𝑊𝑓 , and 𝑊𝑜 are the input, forget, and output gates
weights, respectively. 𝑏𝑖 , 𝑏 𝑓 , and 𝑏𝑜 are the biases of their respective
gates, 𝑥𝑡 is the input data, ℎ𝑡−1 is the hidden state from a previous
time step, and 𝜎 is the sigmoid activation. The new hidden state ℎ
and cell state 𝐶 are calculated using:

𝐶𝑡 = tanh(𝑊𝑐 .[ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑐 ) (4)

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶𝑡 (5)

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝐶𝑡 ) (6)

𝑊𝑐 and 𝑏𝑐 represent the weight and bias used in the cell state, tanh
is the hyperbolic tangent activation function, 𝐶𝑡−1 is the cell state
at the previous time step, and ⊙ represents the Hadamard product.
Our proposed architecture consists of three recurrent LSTM layers
with 64 units, a dense layer with 10 units, and a softmax activation
function.

4.3.3 GRU. GRU networks reduce the complexity of LSTM using
two gates: the update 𝑧𝑡 and reset gate 𝑟𝑡 , expressed as:

𝑧𝑡 = 𝜎 (𝑊𝑧 .[ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑧) (7)

𝑟𝑡 = 𝜎 (𝑊𝑟 .[ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑟 ) (8)

where𝑊𝑧 and𝑊𝑟 are the update and reset gates weights, respec-
tively. 𝑏𝑧 and 𝑏𝑟 are the biases of their respective gates. The hidden
state, ℎ, of the GRU model is given as:

ℎ𝑡 = (1 − 𝑧𝑡 ) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̃𝑡 (9)

ℎ̃𝑡 = tanh(𝑊ℎ [𝑟𝑡 ⊙ ℎ𝑡−1, 𝑥𝑡 ] + 𝑏ℎ) (10)

where𝑊ℎ and 𝑏ℎ are the weights and biases of the hidden state,
respectively. Our proposed architecture consists of three GRU layers
with 64 units, followed by a dense layer with 10 units and a softmax
activation function.
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4.4 Training and Testing
In this stage, the IDS model is trained using the processed dataset,
divided into training and testing sets with a ratio of 80:20. The
preprocessed training set is used by each vehicle to start the FP
phase until the smashed data is obtained and transmitted to the
RSU via DSRC or V2X. In return, the RSU completes the FP, starts
the BP, and returns the smashed gradients back to the vehicle.

After training, we evaluate the model performance using stan-
dard metrics such as recall, precision, F1 score, and accuracy. Re-
call 𝑅, represents the proportion of accurate attack predictions
in the attack class and is given as 𝑅 = 𝑇𝑃

𝑇𝑃+𝐹𝑁 , where 𝑇𝑃 and
𝐹𝑃 are the true and false positive values, respectively. The pre-
cision, 𝑃 , is the fraction of correctly identified anomalies, com-
puted as 𝑃 = 𝑇𝑃

𝑇𝑃+𝐹𝑃 , where 𝐹𝑃 represents the false positive value.
The F1 score is the weighted average of recall and precision, ex-
pressed as 𝐹1 =

2×(𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 . Finally, accuracy, 𝐴, is the

fraction of the correct predictions in the total observations, given
as 𝐴 = 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁 , where 𝑇𝑁 is the true negative.

5 ADAPTIVE OFFLOADING USING REGRET
MINIMIZATION

Choosing the SL approach for training is not always optimal, as the
delay incurred due to the data transfer to the server could outweigh
the advantages of local processing. Instead of statically defining a
training strategy, we can dynamically assess when to utilize the SL
approach at specific intervals, considering the observed training
time. This dynamic offloading technique effectively minimizes the
time it takes to train the neural models. To achieve this, we adapt
the PROD regret minimization algorithm [6] for training our IDS
algorithms, which aids in selecting the optimal training strategy.
The regret calculation is based on the expected delay and the delay
due to the observed training time. Mathematically, the regret can
be expressed as:

𝑅𝑖 = 𝑑 − 𝑑𝑖 (11)
Here, 𝑑 is the expected delay and 𝑑𝑖 is the observed delay due to
the 𝑖-th strategy of the training device (i.e., train locally or utilize
SL). By assigning a certain weight to each strategy, the expected
delay can be calculated as:

𝑑 =

|W|∑︁
𝑖=1

(𝑝𝑖 ∗ 𝑑𝑖 ) (12)

Here, 𝑝𝑖 is the probability of choosing a strategy based on its current
weight𝑤𝑖 and is calculated as:

𝑝𝑖 =
𝛼 ∗𝑤𝑖∑ |𝑊 |

𝑖=1 (𝛼 ∗𝑤𝑖 )
(13)

Based on the regret calculation, the weights of the strategies are
updated with a learning parameter 𝛼 , where 𝛼 > 0.

𝑤𝑖 = 𝑤𝑖 (1 + 𝛼 ∗ 𝑅𝑖 ) (14)

As the delay due to a strategy increases, the weights get readjusted
so that the strategy with the lower delay gets preferred, cumula-
tively reducing the overall training time.

As summarized in Algorithm 1, the adaptive offloading technique
takes into account various input parameters, such as a weight vector
(W) containing initial weights for each training strategy, a learning

Algorithm 1 Adaptive Offloading with Regret Minimization
1: Input: weight vector W = {𝑤1, 𝑤2}, learning parameter 𝛼 , delay

𝑑 = {𝑑1, 𝑑2}
2: Output: updated weight vector W′ = {𝑤′

1, 𝑤
′
2}

3: Initialize expected delay 𝑑
4: for 𝑖 ∈ [1, |W|] do
5: 𝑑𝑖 =

𝑑𝑖∑|W|
𝑖=1 (𝑑𝑖 )

6: end for
7: for 𝑡 ∈ [0,𝑇 ] do
8: for 𝑖 ∈ [1, |W|] do
9: 𝑝𝑖 =

𝛼∗𝑤𝑖∑|W|
𝑖=1 (𝛼∗𝑤𝑖 )

10: 𝑑 =
∑|W|

𝑖=1 (𝑝𝑖 ∗ 𝑑𝑖 )
11: end for
12: for 𝑖 ∈ [1, |W|] do
13: R𝑖 = 𝑑 − 𝑑𝑖
14: Update 𝑤′

𝑖
= 𝑤′

𝑖
(1 + 𝛼 ∗ R𝑖 )

15: end for
16: end for
17: Return W′

parameter (𝛼), and the delay (𝑑) associated with each strategy. The
weight vector𝑊 comprises non-negative values that sum up to 1,
i.e.,

∑ |W|
𝑖=1 𝑤𝑖 = 1. The algorithm initializes a random vector that

stores the values of the expected delay in line 3. Following that, the
input delay vector is normalized, as outlined in lines 4-6. Lines 8-11
show the calculation of a probabilistic distribution for selecting each
strategy and the associated expected delay based on the current
strategy as provided in equations 12 and 13. Subsequently, the
expected delay is utilized to calculate regrets for each strategy
based on equation 11. Line 14 adjusts the weights as depicted in
equation 14 to minimize the overall regrets. Finally, line 17 returns
the optimal weight for each task.

6 PERFORMANCE EVALUATION
6.1 Evaluation Settings
We performed the experiments using Pytorch 2.0.0, a Python frame-
work for deep learning. We implemented the split learning architec-
ture with CNN, LSTM, and GRUmodels and compared our approach
to the performance of these models when they are trained fully on
the client side. In our experiment, we used the Adam optimizer and
set the learning rate to 1e-3. We utilized a batch size of 128 and used
the cross-entropy loss function to measure errors in prediction. The
client-side models were trained on an Intel(R) Core(TM) i9-10900
CPU @ 2.80GHz with 32.0 GB RAM. The server-side models were
trained on an NVIDIA Quadro P400 GPU.

6.2 Evaluation Results
6.2.1 Comparison with baselines: To evaluate the effectiveness of
our IDS against attacks in intra- and inter-vehicular networks, we
performed experiments using the CAN and CICIDS2017 datasets
and set 𝑙𝑐 to 2 for all the models.

Table 1 presents the results of our inter-vehicular attack detec-
tion. The table indicates that without split learning, the GRU model
achieves an accuracy and F1 score of 0.95, while with split learning,
the model’s performance improves to an accuracy and F1 score of
0.96. The LSTM model also shows similar improvement, increasing
accuracy and F1 score from 0.96 to 0.98 when using split learning.
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In addition, our result indicates that the CNN model outperforms
GRU and LSTM models, achieving an F1 score and accuracy of 0.99,
both with and without split learning.

Table 2 shows the result for the intra-vehicular intrusion de-
tection. From the result, the LSTM model achieves 0.98 for both
accuracy and F1 score with and without split learning. CNN im-
proves the detection performance with an F1 score and accuracy of
0.99 with and without split learning. GRU performed best compared
with CNN and LSTM, achieving an F1 score and accuracy of 1. With
split learning, this score remained 1, showing again that using split
learning does not degrade the performance of the IDS. Our results
highlight the efficiency of split learning in training IDS models for
IoV while preserving data privacy during training and maintaining
high model performance during inference.
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Figure 2: Computation time with and without split learning

6.2.2 Does our approach save computation time on the client?: We
assessed the effectiveness of our IDS in reducing client training time
by comparing the training time with and without split learning. For
each scenario, we measured the duration of both FP and BP on the
client device. Our results, shown in Fig. 2, demonstrate that split
learning reduces computation time compared to training the CNN
model entirely on the client device.We observed similar results with
LSTM and GRU, where split learning reduced computation time
on the client device. Our approach enables clients to considerably
decrease computation time, allowing them to concentrate on other
tasks and enhance the quality of service in the IoV.

6.2.3 Impact of client-side layer complexity: To further illustrate
the impact of our IDS on training time, we varied the complexity of
the client-side model by using different values of 𝑙𝑐 . We conducted
this experiment using the LSTMmodel with the CAN dataset. Fig. 3
depicts that the split learning approach saves the most computa-
tion time for the client when 𝑙𝑐 = 1. It is worth mentioning that
we obtained similar results with CNN and GRU networks. More-
over, as 𝑙𝑐 increases, the client’s computation time also increases.
Our findings suggest that reducing the client’s computation time
necessitates selecting an appropriate value for 𝑙𝑐 that will shift
more computation to the powerful device and enhance the overall
training performance.
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Figure 3: Impact of layer complexity on the client device

6.2.4 Does our approach preserve privacy?: To show that our ap-
proach does not transmit raw data between the client and the server,
we use color maps to show that the data transmitted to the server
differs from the client’s input. For this experiment, we used the
CICIDS2017 dataset. Fig. 4(a) and Fig. 4(b) show the first epoch’s
inputs to the client and server-side CNN model, respectively. Af-
ter the client receives the raw input in Fig. 4(a), the input passes
through the convolution, activation, and pooling layers. This pro-
cess changes the raw data to the smashed data shown in Fig. 4(b)
before sending it to the server. Our result shows that training ef-
ficiency and data privacy can be preserved by devices taking part
in collaborative training in IoV. Additions of perturbations to the
client-side model output before being sent to the server can further
improve privacy.

a) Input to the Client-side Model in CNN 

b) Input to the Server-side model in CNN  

Figure 4: Color map showing client-side and server-side in-
puts using split-CNN and data from CICIDS2017

6.2.5 Impact of adaptive offloading on training latency: We eval-
uate the impact of the adaptive offloading strategy on the overall
training time of the SL-based training procedure. As illustrated in
Figure 5, the client’s computation time reduces with split learn-
ing compared to the scenario where the client conducts training
exclusively on a resource-limited device. Nonetheless, offloading
during each epoch might not be optimal for the fluctuating network
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Table 1: Summary of split learning-based IDS Evaluation on CICIDS2017 dataset

Attack Type

CNN LSTM GRU

No Split Split No Split Split No Split Split

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

No Attack 0.99 0.96 0.99 0.98 0.99 0.98 0.99 0.99 0.99 0.96 0.99 0.97 0.99 0.98 0.99 0.98 0.99 0.94 0.99 0.97 0.99 0.95 0.99 0.97

DDoS 1 0.99 1 1 1 1 1 1 0.99 0.98 0.99 0.98 0.98 0.99 0.98 0.98 0.86 0.99 0.86 0.92 0.84 0.99 0.84 0.91

PortScan 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.92 0.99 0.92 0.95 0.98 0.99 0.98 0.98 0.85 0.98 0.85 0.91 0.93 0.99 0.93 0.96

DoS 0.99 1 0.99 0.99 0.99 1 0.99 1 0.89 0.97 0.89 0.93 0.94 0.97 0.94 0.96 0.94 0.96 0.94 0.95 0.94 0.96 0.94 0.95

Weighted Avg 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.96 0.96 0.98 0.98 0.98 0.96 0.95 0.95 0.96 0.96 0.96

Network Acc 0.99 0.99 0.96 0.98 0.95 0.96

Table 2: Summary of split learning-based IDS Evaluation on CAN dataset

Attack Type

CNN LSTM GRU

No Split Split No Split Split No Split Split

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

No Attack 0.98 0.96 0.98 0.97 0.98 0.96 0.98 0.97 1 0.99 1 1 1 0.99 1 1 1 1 1 1 1 1 1 1

DoS 1 0.99 1 0.99 1 0.99 1 0.99 0.94 0.99 0.94 0.97 0.94 1 0.94 0.97 0.99 1 1 1 1 1 1 1

Fuzzy 0.99 1 0.99 0.99 0.98 1 0.98 0.99 0.81 1 0.81 0.89 0.59 1 0.59 0.74 0.96 0.99 0.96 0.97 0.98 0.99 0.98 0.99

Gear 1 1 1 1 1 1 1 1 0.79 1 0.79 0.88 0.97 1 0.97 0.98 1 1 1 1 1 1 1 1

RPM 1 1 1 1 1 1 1 1 1 0.83 1 0.91 1 0.83 1 0.91 1 1 1 1 1 1 1 1

Weighted Avg 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.99 0.98 0.98 1 1 1 1 1 1

Network Acc 0.99 0.99 0.98 0.98 1 1

conditions prevalent in the IoV, which can degrade over time. Our
result shows that the regret minimization-based adaptive offloading
technique can significantly reduce the client’s computation time
compared to only SL, reducing the overall latency by 23.81%, as
opposed to the 14.79% decrease achieved by the SL-based method
alone.

6.2.6 Impact of adaptive offloading on training strategy: To illus-
trate the impact of the adaptive offloading strategy on the decision
made by the device to offload or train locally, we perform the train-
ing of the CNN model for IoV IDS over 20 epochs. Fig. 6 shows
the variation of the offloading probabilities at each epoch for the
adaptive offloading strategy compared to a static approach of local
computation or offloading to an edge server. As our result shows,
the adaptive strategy changes its decision depending on the ob-
served network condition to minimize the overall latency of the
training process.

7 RELATEDWORK
Several works have been proposed for anomaly detection in IoV.
Some approaches have used ML techniques for intrusion detection
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Figure 5: Impact of adaptive offloading strategy on the overall
training time

in intra-vehicular networks, such as CAN [2, 4], while others have
focused on detecting anomalies in inter-vehicular networks [9, 18].
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Alkhatib et al. [2] proposed a deep learning-based multi-agent
IDS for CAN anomaly detection, using an attention-based self-
learning technique that relies on asynchronous signals and CAN
IDs to reduce the need for long-term monitoring. Anjum et al. [4]
proposed using an extreme gradient boosting machine (XGBoost) to
detect anomalies in CAN data and employed a data filter module to
extract useful features for the XGBoost algorithm. Although these
methods enhance anomaly detection in the in-vehicle network, they
do not address inter-vehicular network communication issues.

Karthiga et al. [9] employed known IDS (KIDS) and unknown IDS
(UIDS) modules to detect anomalies in inter-vehicular networks.
The KIDS used an adaptive neuro-fuzzy inference system to iden-
tify known attacks in vehicular ad-hoc networks, while the UIDS
utilized a modified LeeNet network, a deep-learning architecture
with few internal layers, to detect unknown attacks. Almutlaq et
al. [3] proposed a two-stage attack detection approach for the IoV
network. In the first stage, they classified traffic as either an attack
or a normal message, followed by the identification of the attack
type using rule extraction methods in the second stage. Yang et
al. [18] proposed a multi-tiered IDS architecture for intra- and inter-
vehicular networks using an ensemble of machine learning models,
including decision trees, random forests, extra trees, and XGBoost.
They also utilized cluster labeling k-means to detect zero-day at-
tacks. However, central training of IDSs creates data privacy issues,
despite its consideration of wider IoV networks. Hbaieb et al. [7]
studied a privacy-preserving IDS based on federated learning in the
IoV, including trust metrics for secure communication. However,
their approach assumed that local devices can handle the entire
training process, which may be challenging for resource-limited IoV
devices. Our method differs by enabling these devices to offload part
of their training to an edge server with greater computing power
while preserving data privacy and improving training efficiency.

8 CONCLUSION
In this paper, we presented a privacy-preserving split learning-
based IDS to address the security concerns of traditional IDSs in the
IoV by avoiding the need to share raw data. Our proposed method
enables resource-constrained IoV devices to offload a significant
part of their training to an edge server with more computational
resources without sharing sensitive data. In addition, our approach

further optimizes the training process by using an adaptive offload-
ing technique that minimizes overall latency. We evaluated the
effectiveness of the proposed model using open-source real IoV
datasets, and the results show that the approach maintains data
privacy and detects anomalies with an average accuracy of 99%.
Also, our proposed adaptive offloading approach reduces the train-
ing time by up to 23.81%. In future work, we plan to fine-tune the
model by predicting the most efficient cut layer that optimizes time
and energy, and consider adding perturbations to the client-side
model output to improve privacy.
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