
Deadline-Based Class Assignment for
Time-Sensitive Network Frame Preemption
Omolade Ikumapayi∗, Paul Agbaje†, Yanyan Zhuang∗, Habeeb Olufowobi†, Gedare Bloom∗

∗University of Colorado Colorado Springs, Colorado Springs, CO, USA
†University of Texas at Arlington, Arlington, TX, USA

Abstract—The IEEE 802.1Q working group defines the Eth-
ernet time-sensitive networking (TSN) standard to support data-
intensive industrial real-time networks. Unfortunately, TSN has
the possibility for frame priority inversion that can lead to
deadline misses. In this paper, we present a novel approach to
address priority inversion in TSN that prioritizes frames during
network configuration, determines traffic paths off-line with
integer linear programming (ILP), and schedules transmissions
on-line using the earliest deadline first (EDF) algorithm. Our
approach, the ILP deadline-based TSN (ILP-DTSN), optimizes
the network for time-sensitive traffic while minimizing the
blocking effects of preemption. ILP-DTSN results in fewer missed
deadlines compared with the time-aware shaper (TAS) with one-
level preemption while reducing average end-to-end latency by
up to 32%.

Index Terms—Time-sensitive networking, Ethernet

I. INTRODUCTION

To support data-rich industrial applications, fieldbus proto-
cols are extended with higher-bandwidth networks including
variants of Ethernet. Unfortunately, Ethernet’s design does not
support global time synchronization or guarantees for message
deadlines [1], which are required for real-time systems that
deliver time-critical messages with varying quality of service
(QoS) requirements. To fulfill the QoS requirements for time-
critical traffic, the IEEE 802.1Q working group developed
the Ethernet time-sensitive networking (TSN) standard [2]
with time synchronization and traffic shaping. The IEEE
802.1Q standard proposes a classification scheme for network
traffic, enabling the differentiation of priority levels for TSN
to improve the QoS of real-time traffic [3]. According to
the IEEE 802.3Qbu standard [4], when frame preemption
is supported on a port, the Media Access Control (MAC)
provides two MAC service interfaces: a preemptable (pMAC)
service interface and an express (eMAC) service interface.
The transmission of frames follows two rules: (i) the express
frames can preempt the preemptable frames; (ii) frames in
the same class cannot preempt each other. Therefore, express
frames are never subject to preemption. A MAC merge sub-
layer between the MAC and Physical layers is connected to
the eMAC and pMAC. Each egress port has a maximum of
eight queues to allocate the two classes of frames, and each
queue is mapped to either the eMAC or the pMAC interface
as shown in Figure 1. Time-critical traffic is queued in the
eMAC, while frames without critical timing constraints are
queued to the pMAC interface.

Q
5

Q
4

Q
3

Q
2

Q
0

Q
1

Q
7

Q
6

Preemptable
MAC

MAC Merge Sublayer

Express MAC

PHY

Filtering

Ingress Port Stream ID 1
Priority 0
Gate ID 1

Stream ID N
Priority N
Gate ID N

 Gate ID 1
gate= 0
IPV= 0

Meter ID 1

 Gate ID 1
gate= 1
IPV = N

Meter ID N

Transmission Selection Transmission Selection

T00: 1,6
T01: 0,6
T02: 1,3
T03: 0,3

T99: 1,1

T100: 0,1

Gate Control List

Fig. 1: Switch Queue Model with Frame Preemption.

TSN provides high bandwidth and low latency but can
cause priority inversion for medium-priority frames. Priority
inversion (blocking) occurs when a low-priority frame holds
a resource that a higher-priority frame requires, delaying the
higher-priority frame until the low-priority frame releases it.
Priority inversion can cause deadline misses for safety-critical
messages [5], [6] especially when medium-priority frames
have tight deadlines or get blocked at multiple switches.

In this paper, we address priority inversion in TSN with
a novel approach that delays low-priority frames that might
block medium-priority frames with tight deadlines. Our ap-
proach assigns priorities to frames during network config-
uration and determines network paths using integer linear
programming (ILP). The transmission schedule is determined
online using the earliest deadline first (EDF) algorithm. This
approach reduces the risk of deadline misses.

In this work we make the following contributions:
1) We introduce a novel approach that assigns priorities to

frames considering frame preemption and that controls
their insertion times into transmission queues.

2) We propose a methodology using ILP for deadline-based
TSN (ILP-DTSN) for finding the optimal allocation of
frames to the two MAC service interfaces: eMAC and
pMAC. ILP-DTSN provides QoS for all priority levels
despite TSN frame preemption by using ILP optimization.

3) We evaluate the performance of ILP-DTSN in comparison
with Time-Aware Shapers (TAS) and multi-level preemp-
tion. ILP-DTSN has fewer missed deadlines and reduces
the average end-to-end delay by up to 32% compared to
TAS with one-level preemption and up to 9% compared
to multi-level preemption.

II. BACKGROUND AND MOTIVATION

This section outlines the time-aware shaper (TAS) and
deadline-based priority assignment, and provides a motivating
example for ILP-DTSN. Table I summarizes our notation.

A. Time-Aware Shaper (TAS)

The TAS, specified in IEEE 802.1Qbv, enhances QoS in
TSN. TAS establishes a Time-Division Multiplexed (TDM)
channel for Ethernet, combining multiple network traffic
streams by assigning distinct time slots to each stream. Frames
are transmitted once all their signal segments have been sent.
TAS operates at the egress port of an interface, utilizing time-
aware gates controlled by gate control lists (GCL). These
gates open and close based on a predefined schedule window,
selecting frames from open queues using priority-based or
credit-based shapers.

To differentiate traffic, TAS assigns priority levels using
the Priority Code Point (PCP) field in the VLAN ID tag of
802.1Q frames. Commonly, traffic is classified into Class A
and Class B, where Class A holds a higher priority level (e.g.,
3) and Class B has a lower priority level (e.g., 2). Frames
from Class A and Class B are chosen based on the open
gates, while frames from closed gates are disregarded. TAS
effectively minimizes propagation delay and ensures a specific
time window for TSN Stream Traffic (ST), which encompasses
time-sensitive data such as audio, video, and control messages
and necessitates deterministic and bounded end-to-end latency.

B. Deadline-based TSN (D-TSN)

The Per-Stream Filtering and Policing (PSFP) model is a
hierarchical standard introduced in IEEE 802.1Qci used to
determine queue allocation and ensure reliability in TSN. This
model is employed in the deadline-based priority assignments
to allow filtering and policing decisions to be made per stream
basis as proposed by Patti et al. [7], which we refer to as
D-TSN. The PSFP model consists of three hierarchy levels:
stream filters for processing frames, stream gates for allowing
frames through, and flow meters for flow information.

The stream gate table has attributes such as gate identi-
fier (ID) and internal priority value (IPV), which are used
in the mapping of frames to streams in the stream filters.
This mapping is based on the PCP calculated during frame
generation. The PCP, determined by the absolute deadline, is
used by end nodes to insert frames into the source transmission
queue [8]. Frames are sorted into n such queues denoted
Qi ∈ {Q0, Q1, . . . , Qn−1}, where Qn−1 has the highest pri-
ority. A TSN switch uses the PSFP stream GCL to determine
which traffic queue is authorized to transmit at a particular
time, allowing a frame’s priority to increase by modifying
the queue into which the frame is inserted hop-by-hop. The
priority of the queue into which the frame will be inserted
is determined by the IPV at time unit u. D-TSN schedules a
frame to transmit if it satisfies the following conditions [7]:{

di,j − t > u

di,j − t ≤ Tc

(1)

TABLE I: Notation.

Symbol Definition
Tc Total Cycle time
n Number of queues in each switch
α Classification for eMAC frames
β Classification for pMAC frames
Cβ Preemption cost
Fi The i-th flow
fi,j Frame j of flow Fi

Ci Transmission time of each frame in Fi

Ti Period of each frame in Fi

Di Relative deadline of all frames in Fi

di,j Absolute deadline of fi,j
ai,j Arrival time of fi,j
ρi,j Priority (queue) of fi,j at an egress queue

where di,j is the absolute deadline of frame j in flow i, t is
the current time, u is the time unit, Tc = N × u is the total
cycle time, and N is the number of gates. Multiplying u by the
number of stream gates gives the cyclical period during which
the priority (i.e., the IPV) is changed. A cycle refers to a fixed
time interval or period within which a frame is scheduled and
transmitted. The cycle period or time determines the length
of the cycle and the timing granularity of the network. After
satisfying Eq. 1, the frame is scheduled for transmission using
strict priority selection with the PCP derived by

PCPi,j = n− 1−
⌊
di,j − t− τbit

Tc

⌋
mod n. (2)

C. Motivating Example

D-TSN ignores the potential for priority inversion in pMAC
that is caused by scheduling eMAC frames according to their
deadlines and ahead of the pMAC frames. As shown in
Figure 2a, consider a network consisting of two switches (SW
1 and SW 2) that has two pMAC flows (lp and mp) and three
eMAC flows (hp) with 1 frame each at the MAC layer. At
t = 0, the lp frame arrives at the merge sublayer before the
mp and first hp frame. While the lp frame is being transmitted,
it gets preempted by an hp eMAC frame arriving at t = 1, and
mp is released during the preemption. After the first hp frame
completes, it moves to the link via switch 2 and lp resumes
until another hp frame preempts it. Only after the lp frame
finishes transmission at t = 6, can the mp frame transmit via
SW 1. Concurrently, lp begins transmission via SW 2, but gets
preempted by the arrival of a third hp frame (from some other
node). mp finishes transmission and gets blocked at switch SW
2 again behind the preempted lp frame. Eventually, mp gets
to transmit, but it can incur blocking by lower-priority frames
at every switch. Priority inversion occurs when an mp frame
must wait for a preempted lp frame to resume transmission
after the hp frame has finished transmitting.

Our approach leverages the PCP and deadline-based
scheduling to delay transmission of the lp frame at its source
prior to release for transmission. This delay leads to a schedule
as in Fig. 2b. The lp frame will not arrive in the MAC layer
until after mp with this schedule because it is delayed by the
EDF scheduler.

0

lp1,1

hp1,3

lp1,1

hp2,1

lp1,1

t

Preemption overhead

mp1,2

Release time
Start time

lp1,1 lp1,1

mp1,2

SW 1

SW 2

hp1,3 hp2,1 hp3,1

(a) Priority inversion in the preemption layer schedule.

0

hp1,3 hp2,1

lp1,1

t

mp1,2

lp1,1

mp1,2

hp1,3 hp2,1 hp3,1

eMAC high priority frame
pMAC medium priority frame
pMAC low priority frame

(b) Schedule by delaying pMAC frame.

Fig. 2: Motivating Example. In 2a the medium-priority frame (mp) incurs blocking at multiple switches by the same low-
priority frame (lp). Our approach manipulates the priority assignment to shift such low-priority frames later within the slack
of their schedule to reduce the likelihood that such blocking can incur a deadline miss.

III. ILP DEADLINE-BASED TSN (ILP-DTSN)

In ILP-DTSN, we adopt Patti et al.’s D-TSN approach [7],
inserting frames in transmission queues based on absolute
deadlines. Our method involves online PCP selection by
source nodes and offline service MAC assignment using ILP,
comprising two components.

A. Priority Selection

Traditionally, the PCP is used to determine the priority of
frames in TSN networks and therefore decide which frames get
the higher priority queues, i.e., access to the eMAC interface.
To ensure that only frames with close absolute deadlines
are selected for transmission, we concentrate only on the
calculation of PCP in the transmission configuration to assign
priority to each frame. Then the eMAC/pMAC is allocated
by considering the preemption cost, i.e., the worst-case delay
a frame can experience due to preemption, using the ILP
formulation in Section III-B.

Additionally, a configurable time unit u from Eq. 1 defines
the limit of frames considered for transmission in a cycle as
described in Section II-B. This limit, represented as [da, db],
guarantees that only frames with deadlines falling within this
interval are selected for transmission. We denote the time that
the i’th cycle ends as tci . For example, if u is 20 µs, tc3
would represent the time at the end of the third interval, which
would be 60 µs. Priority inversion can occur when a low-
priority (lp) frame arrives earlier than a medium-priority (mp)
frame. In such cases, we modify the PCP in order to delay
the transmission of the lp frame. Our approach delays the
lower-priority frames unlike other models in which the higher-
priority frames are delayed and multi-level preemption is used.
Our approach for PCP selection is shown in Algorithm 1,
where the PCP is denoted as ρi,j .

Generally, the interval from the arrival time ai,j of the j-th
frame in the i-th flow plus its relative deadline Di is known
as the absolute deadline, and it is given by di,j = ai,j +Di,
which is calculated as frames arrive, c.f. line 10. A frame’s
remaining time RemTime (or slack) to the end of its deadline

Algorithm 1 Priority Selection

Output: List of priorities ρi,j for all frames in Fi

1: function PRIORITY SELECTION(ai,j , Fi, Qn, u, Tc)
2: i ← 0
3: tci ← 0
4: ρlist ← []
5: selected← {}
6: selected← {fi,j : False for fi,j ∈ Fi}
7: while ∃ fi,j and selected[fi,j] is False do
8: for each fi,j ∈ Fi do
9: di,j ← ai,j +Di

10: RemTime ← di,j − tci
11: if u < RemTime ≤ Tc then
12: [da, db] ← [di,j − u, di,j]

13: ρi,j ← n− 1−
⌊

RemTime−Prdl
Tc

⌋
mod n

14: selected[fi,j]← True
15: ρlist.append(ρi,j)
16: end if
17: end for
18: i ← i+ 1
19: tci ← tci−1 + u
20: if ai,j + tci−1 < tci then Selected is False
21: end if
22: end while
23: return ρlist
24: end function

is calculated by deducting the current time tci within the cycle
period, which is calculated in line 9 as

RemTime = di,j − tci . (3)

However, RemTime should be less than or equal to the cycle
time Tc so as not to miss the current cycle, which is checked
by the conditional at line 11. The selected set is used to
keep track of frames that have already been considered for
transmission. We then give a configurable deadline range of
[da, db] of frames to transmit within a cycle period. A frame
is set to transmit if di,j ∈ [da, db].

The calculation of ρi,j is derived from the priority calcula-

tion of D-TSN [7], modified as follows:

ρi,j = n− 1−
⌊
RemTime− Prdl

Tc

⌋
mod n. (4)

Here, Prdl accounts for preemption overhead, considering
the potential delay of an express frame by up to 143 bytes
(the length of the longest non-preemptable Ethernet frame
fragment [9]). Additionally, each preemption incurs a total
overhead of 24 bytes. We factor in preemption overhead once
for each frame in our priority calculation. Also, we handle
preemption overhead only for eMAC frames, with pMAC
frames considered in the ILP model (refer to Section III-B).
The preemption delay overhead is calculated as:

Prdl = max((143× 8τbit), ((24× 8τbit) + Ci,j)) (5)

where τbit represents the time to transmit one bit, and a
conservative estimate is used by adding Ci,j to account for
blocking. A frame is identified as delayed at line 20 if, at the
conclusion of the current cycle, ai,j + tci−1

< tci . Delayed
frames undergo reconsideration through the loop iteration.

B. ILP Formulation

The performance objective of ILP-DTSN is to minimize the
end-to-end delay for frames in each flow subject to constraints
of the TSN standard and avoidance of deadline misses. With
the constraints, all frames fi,j are scheduled based on their
individual deadlines while ensuring their proper assignment
to eMAC and pMAC queues denoted by α and β respectively.
We define the objective function as:

Minimize
∑
i∈F

∑
j∈f

Ed (6)

Where Ed is the end-to-end delay, such that: (i) The flows
are schedulable (Fi deadline is not exceeded), (ii) Each frame
with the closest deadline is assigned to the highest priority
queue (iii) The queues with the closest deadline are assigned
to the express service interface. In the following, we define
these constraints formally.

1) Flow-to-Queue Constraints: Frames need to be selected
for transmission based on their deadlines while avoiding
collisions on the links and adequate resource availability along
the frames’ designated paths. In the following, we formulate
each flow-to-queue constraint to achieve these requirements.

Routing Constraint: When frame fi,j of flow Fi selects the
transmission route, the directed edges connecting the source
node and the destination node must belong to the network. We
model the network routes by binary path variables such that
if Fi is routed through an edge from a node, the path variable
Ri,j,l is set to 1. Otherwise, it is set to 0, thus, we have:

Ri,j,l =

{
1, fi,j is routed through l.

0, otherwise.
(7)

Frame Constraint: It is necessary that on all edges, different
frames do not overlap. Thus, frames are scheduled so that
the reserved times on any edge for two frames in a queue

p

eMAC high priority frame

pMAC low priority frame

Fig. 3: Variables of Preemption Constraints.

do not overlap in every hyperperiod. We denote the start of
transmission of a frame fi,j on link l as tsti,j,l where Ti is
the period and Ci,j,l the transmission time of frame fi,j on
link l. We can ensure that the reserved time slots for frames
from different flows at a particular edge do not overlap with
constraints:

∀fi,j , fi,k ∈ Fi :

fi,j ̸= fi,k

0 ≤ x <
Hp

Ti
∧ 0 ≤ y <

Hp

Ti
,∀x, y

if Ri,j,l +Ri,k,l ≥ 2 : (8)
tsti,j,l + x · Ti − (tsti,k,l + y · Ti) ≥ Ci,k,l

∨
tsti,k,l + y · Ti − (tsti,j,l + x · Ti) ≥ Ci,j,l

where Hp is the hyperperiod, x · Ti denotes the start of the
x-th period for frame fi,j and y · Ti denotes the start of the
y-th period for frame fi,k. With these constraints, one of the
overlapping frames must wait until the end of the transmission
of the other frame before transmitting.

The selection of frames for transmission is based on their
absolute deadlines, denoted as di,j , within a specified deadline
range [da, db]. To derive an absolute deadline offline, the
minimum of all absolute deadlines that arrive within the
current cycle is found. To ensure that frames are selected based
on their earliest deadlines, the following constraint is applied:

di,j = min{ai,j +Di : ai,j ≤ tci} (9)

Queue Assignment Constraint: When the frame fi,j is
transmitted through a switch it is buffered in the queue of
the switch’s egress port. This buffering leads to the following
constraint:

∀fi,j ∈ Fi :

ai,j ≤ tci

ρi,j ∈ {0, . . . , Qn − 1}
(10)

Each frame is assigned a PCP ρi,j which is a function
of its absolute deadline as calculated in Algorithm 1 and
Eq. 4. The frame’s PCP maps it to the corresponding queue.
As before, since the exact arrival times are unknown this
constraint imposes an inequality on arrival times within the
current cycle.

2) Queue to eMac/pMAC Class Assignment Constraints:
To incorporate the impact of preemption and preemption delay
as a cost factor, we introduce the concept of the eMAC/pMAC

queue constraint. This constraint considers the number of
preemptions a frame may experience and evaluates the effect
of preemption delay. Based on this evaluation, a decision is
made to assign the frame to either the eMAC or pMAC class,
as well as to determine the number of queues to allocate to
the eMAC and pMAC.

Queue Class Assignment Constraint: Let M = mα,mβ

be the set of eMAC and pMAC interface, and Qα, Qβ are
subsets that partition the set of Q as eMAC and pMAC queues,
respectively. We define binary variables eq and pq to represent
the mapping of Qα and Qβ to mα and mβ , respectively, where
q ∈ (Qα ∪Qβ), eq = 1 for all queues in mα and pq = 1 for
all queues in mβ . Then we have

eq =

{
1, q ∈ Qα

0, otherwise
pq =

{
1, q ∈ Qβ

0, otherwise
(11)

Queues are mapped in priority order with all queues in
Qα (assigned to eMAC) having a greater index and therefore
priority than queues in Qβ (assigned to pMAC). We enforce
the constraint that qi ∈ Q is mapped to exactly one of the
MAC queues as follows:

∀q ∈ Qα ∪Qβ :

eq + pq = 1∑
fi,j∈Fi

eρi,j
+ pρi,j

= 1
(12)

Furthermore, we ensure that the sum S of the sizes of all
frames in Qα, Qβ do not exceed the buffer sizes Bα, Bβ

allocated for eMAC and pMAC, respectively, by∑
q∈Qα

Sq ≤ Bα

∑
q∈Qβ

Sq ≤ Bβ . (13)

Transmission constraint: We keep track of frames that have
been routed and transmitted to the MAC layer by time t by
assigning to these frames a binary variable Zi,t given by:

Zi,t =

{
1, fi,j has been sent to the MAC layer.
0, otherwise.

(14)

Preemption Constraints: When modeling preemption as an
ILP problem, it is important to consider the interruption time
of preempted frames and allocate the remaining time left for
transmission when they resume. We are inspired by Castro et
al. [10] who solve flowshop preemptive scheduling problems
with break time using a continuous-time formulation. In our
work, we allow other jobs to continue while a specific job is
on break. This preemption model fits our problem reasonably
well for the solver to make the expected decision in assigning
which queue to use for the express or preemptable frame.
Our problem is further constrained by the requirement that
preemption will occur only if an express frame arrives while
a preemptable frame is transmitted.

We introduce binary variables Pαi,j
and Pβi,j

to represent
the transmission of frame fi,j over the eMAC and pMAC
respectively. We ensure the values taken by the variable Pmi,j

are independent with respect to time slots. This means that
frames in eMAC will not be preempted by pMAC frames,
whereas pMAC frames can be stopped to resume transmission
at another time slot. Therefore the constraint is given by:∑

Pαi,j
−
∑

Zi,t ≤ 1 (15)

The variable Zi,t represents the transmission decision for a
frame at time t through the MAC layer. We furthermore ensure
that at most one message transmits in any given time t with
the following:

∀fi,j ∈ Fi, t > 0 :

Zi,t ≤ Pαi,j

Zi,t ≤ Pβi,j

Zi,t ≥ Pαi,j + Pβi,j − 1

(16)

A pMAC frame can transmit up to 128 bytes of the
payload before being preempted by an available eMAC frame,
according to the standard. Also from the standard, we expect
each preemption overhead to cost (about) 12 bytes. We denote
the start time in this phase as T ts

β , break period as T br
β ,

resumption period as T rp
β , and finish time of such a preempted

frame as T tf
β . The pMAC frame is stopped from transmitting

within the interval [T br
β , T rp

β]. The duration of this interval
serves as the preemption cost Cβ = T rp

β − T br
β . We add a

constraint to ensure preempted frames can finish before their
deadlines accounting for the extra preemption cost given by

T tf
βi,j
≤ (T ts

βi,j
+ delay + Ci)Pβi,j +

∑
b∈brβ

Cβ ≤ di,j (17)

For eMAC frames, from eqn 18, we consider the following
constraint to meet their deadlines.

T tf
αi,j
≤ (T ts

αi,j
+ delay + Ci)Pαi,j ≤ di,j (18)

Where delay is the propagation and processing delay which is
a (roughly) constant, network-specific value that includes the
time it takes for a signal to propagate through the physical link
between the nodes and the processing overhead at a switch.

We now introduce variables Xαi,j
and Xβi,j

to denote an
eMAC and pMAC frame, respectively, where the eMAC frame
preempts the pMAC frame. Therefore, an eMAC frame is
allowed to preempt a pMAC frame if the following holds:

Xαi,j = 1

Xβi,j = 1

Pαi,j
T ts
αi,j

+ (128× 8)τbit ≤ ai,j ≤ Pβi,j
T ts
βi,j

+ Ck

(19)

The constraint in Eq. 19 ensures that a pMAC frame is
preempted at any time an eMAC frame arrives within a period
when the pMAC is chosen to transmit plus its transmission
time. Further, we also allow the preemption to occur after the
pMAC frame has transmitted up to 128 bytes.

We allow the transmission of the eMAC frame to commence
by ensuring that the pMAC frame observes the break period.
To do that, we consider T ts

αi,j
, the time eMAC frame (Xαi,j

)
will be chosen to transmit. The binary variable that allows

the eMAC/pMAC frame to transmit after queuing is Zi,t =
1. The frame scheduling constraint guarantees that no two
frames can transmit simultaneously at the MAC layer. When
the pMAC frame is preempted, from Eq. 19, Xαi,j

= 1. Then,
we ensure that the eMAC frame gets transmitted only after the
blocking time (break period) of the pMAC frame. This break
period will be less than or equal to the start of the eMAC
frame transmission plus its transmission time. The time eMAC
frame finishes transmitting should be less than or equal to
the resumption of the preempted pMAC frame. The pMAC
frame then continues to its finish time or experiences another
preemption. The constraint is given by:

T br
βi,j
≤ T ts

αi,j
+ Ci

T tf
αi.j
≤ T rp

βi,j
≤ T tf

βi,j
Zi,t

(20)

Since from Eq. 15, Pβi,j
must have been changed to 1 to

transmit, then the below constraint helps to change Pβi,j
back

to 0 for the eMAC frame to transmit. This model is used for
all the frames until completion.

Pαi,j
+ Pβi,j

= 1

Pαi,j
Xαi,j

+ Pβi,j
(Xβi,j

− 1) = 1
(21)

Finally, after the break period of pMAC frames and there are
no other eMAC frames to transmit. Eq. 21 becomes

Pαi,j
+ Pβi,j

= 1

Pαi,j
(Xαi,j

− 1) + Pβi,j
Xβi,j

= 1
(22)

IV. EVALUATION

We implemented the ILP with the specified constraints using
Gurobi, a Python-based optimizer solver. We simulate the
behavior of the network devices, including the switches, using
SimPy, a discrete event simulator. We designed a network
application in SimPy to perform inter-layer optimization and
routing of frames between nodes. We integrated the ILP
formulation into the SimPy model to enhance the traffic
routing and scheduling while ensuring adherence to the con-
straints outlined in Section III-B. We used the OMNeT++
framework along with the Nesting simulator, which supports
physical layer preemption as defined in the IEEE 802.1Qbu
standard [11] to evaluate and validate the results. The number
of eMAC/pMAC queues, the flows that are mapped to queues,
and the routing of each flow all are used to configure the
Nesting framework.

A. Experiment 1: Comparison of ILP-DTSN with TAS

In this experiment, we compare the end-to-end delay of
TAS with ILP-DTSN for a 2-switch, 8-node topology as
used previously by Castro et al. [10], which simulates an
in-vehicle network that handles the communications of Ad-
vanced Driver Assistance Systems (ADAS) and multime-
dia/infotainment with frame preemption enabled. The network
operates at a data rate of 100Mbps. The processing delay of
each switch is set to 1µs, and the propagation delay is set to
100ns. We adapted the flow parameters with slight changes
from the original [10] for this experiment, which are presented

TABLE II: Experiment 1 ADAS Flow Parameters [10].

Flow ID P(µs) Src Size(B) Dst
1 100 ES1 46 ES4

2 200 ES1 46 ES4

3 200 ES5 184 ES3

4 100 ES5 184 ES2

5 200 ES5 184 ES2

6 100 ES4 184 ES5

7 500 ES4 400 ES6

8 1000 ES4 718 ES6

9 500 ES4 600 ES7

10 1000 ES4 800 ES7

11 1000 ES6 500 ES1

12-14 100 ES8 80 ES4

15 200 ES8 350 ES4

16-17 10000 ES2,3 1496 ES8

18 10000 ES7 1496 ES5

in Table II. We set the time interval u = 120, slightly above
the minimum deadline in the flows. The cycle time is set at
n× u in this case, and Algorithm 1 is used to determine the
values [da, db]. At the end of each time slot, we increase these
values by 120µs. The frame priority is calculated based on the
flow’s deadline and assigned to the VLAN Tag of the frame.
Flows with shorter deadlines are assigned to queue 7 within
a cycle, while the best-effort flows had to wait until tci=74

before being transmitted. This approach ensures that frames
with higher deadlines, such as frames from f1,1 are transmitted
when tci=0

, to avoid missing their deadline.
We compare ILP-DTSN as described in Section III with

TAS. With TAS, each flow has a pre-defined traffic class.
According to the standard [12], class A and class B may
be assigned priority values of 3 and 2, respectively. We
compare our ILP formulation against the ILP TAS proposed by
Hellmans et al. [13]. The TAS scheduling depends on the cycle
time as opposed to the deadline scheduling that ILP-DTSN
uses. The main constraint considered in the TAS scheduling is
to ensure that the completion time for a flow does not exceed
the cycle time. However, this constraint does not take into
account the deadline and can lead to increased blocking delays
when different traffic pass through.

Table III shows the average end-to-end delay with the
described parameters. The result demonstrates a minimized
end-to-end delay with our model compared to the TAS con-
figuration, where blocking delays were experienced by flow
4 due to preempting best-effort traffic. On average, flow 4
exceeded its deadline with TAS. In this example, ILP-DTSN
decides to use only queue 7 as the eMAC queue, and it delayed
frames from flows 16-18 by giving them a priority of 2. This
configuration reduces the network load due to the delayed
flows, benefiting flows like F4.

B. Experiment 2: Flows without Best-Effort Traffic

We also conducted an evaluation of our approach on flows
without any best-effort traffic and using a 3-switch topology as
depicted in Fig. 4a. In this case, the TAS traffic was scheduled
with different classes. The properties of the flows are presented
in Table 4b. Class A traffic is considered as medium priority
frames, which are subjected to delays from class B traffic in
the same preemptable queues. In this experiment, we selected

TABLE III: Experiment 1 average end-to-end delay.

Flow ID Deadline Class ILP-DTSN TAS
1 100 ST 17.3 17.3
2 200 ST 18.5 24.4
3 200 A 62.4 81.9
4 100 A 66 100.7
5 200 A 102 118.7
6 100 A 62.8 62.8
7 500 B 131.5 131.5
8 1000 B 311.2 366.3
9 500 B 119.2 187.4
10 1000 B 221 373.5
11 1000 B 197.2 280

12-14 100 A 49 56.2
15 200 B 74.9 95.3

16-17 - BE - -
18 - BE - -

Sw1

ES6

ES1

ES3

ES2 ES5

Sw2

ES4

ES8

Sw3

ES7

(a) 3-switch topology
Flow ID Src Dst Class

1 ES1 ES7 A
2 ES2 ES7 ST
3 ES4 ES7 ST
4 ES5 ES7 A
5 ES6 ES7 B
6 ES6 ES8 ST
7 ES8 ES7 B
8 ES6 ES8 ST
9 ES6 ES8 A
10 ES8 ES7 B

(b) Flow Parameters for 3-switch network

Fig. 4: Experiment 2 Topology and Flow Parameters.

periods from the set {1000, 5000, 10000} µs and calculated
the resulting payload up to 1500B using a data rate of
100Mbit/s. We averaged the end-to-end delay from 15 stream
traffic frames and compared the results of TAS with ILP-
DTSN. For this case, the cycle time u was set to 500 µs.

The results shown in Fig. 5a indicate that ILP-DTSN
reduces delays for ST traffic. The highest reduction was when
the TAS ST shows 960 µs and ILP-DTSN shows 650 µs.
This is expected as the frames with higher deadlines are
delayed for the lower-priority frames, hence, decreasing their
overall end-to-end delay. For the class A traffic we see more
improvement as—unlike the fixed lower priority queue used
in the TAS approach—some of these frames were assigned
to higher priority queues. However, the class B frames suffer
more when we delay them in most cases as shown in Fig. 5c.

In addition to evaluating the average end-to-end de-
lay, we investigated the maximum delay using periods of
500, 1000, 1500 µs with u set to 32. The results, illustrated
in Fig. 6, compare TAS with ILP-DTSN. In scenarios of

TABLE IV: Flow Parameters from Multi-Level Preemption [5]

F P D Src Size Dst
1 500 120 ES1 300 ES4

2 700 250 ES2 700 ES5

3 100000 - ES3 1500 ES6

TABLE V: Comparison of ILP-DTSN with multi-level pre-
emption [5] and one-level preemption using TAS.

Worst-case E2E-Delay
F TAS Multi-Level ILP-DTSN
1 109 109 109
2 253 203 186
3 - - -

high network utilization, the maximum delay may exceed
the period, resulting in deadline misses. Notably, ILP-DTSN
demonstrates consistently lower maximum end-to-end delays
at lower and intermediate network utilization levels than TAS.

C. Experiment 3: Comparison with Multi-Level Preemption

We compare ILP-DTSN and the multi-level preemption
mechanism proposed by Ojewale et al. [5] reusing their topol-
ogy and flow parameters, shown in Table IV. The evaluation
focused on the end-to-end delay of three flows: F1, F2, and
F3, as depicted in Table IV. ILP-DTSN assigned F1 to queue
7 and F2 to queue 6. Both flows were scheduled to transmit
at time t = 0. F3 was scheduled to transmit at t = 2 ms to
avoid delays in the network.

Table V depicts the worst end-to-end delay of flows F1 and
F2 comparing one-level preemption using ILP-DTSN, one-
level preemption, and multi-level preemption [5]. Note that
the values for multi-level preemption are reproduced from
their paper, as we were only able to reproduce their approach
in part due to the differences in the network architecture.
However, based on the identical performance we obtained for
flow F1, we are confident that our results are comparable.
When comparing the results of ILP-DTSN with the multi-
level preemption mechanism for flow F2, we observed a
lower overhead delay of approximately 9%. F2 encountered no
blocking from F3 instances and did not undergo an additional
layer of preemption. Note that the delay reduction achieved
in this specific simulation did not consider any additional
overhead that may arise from architectural changes required
by the multi-preemption approach. We expect the performance
of ILP-DTSN would be significantly improved with multiple
switches and many best-effort frames.

V. RELATED WORK

Park et al. [14] discussed the synthesis problem for as-
signing frames to eMAC and pMAC and proposed a genetic
algorithm as a heuristic solution but do not consider the
entire traffic flow or its effects on deadline misses. Lo Bello
et al. [15] proposed a schedulability analysis for TSN with
scheduled traffic and preemption support focusing on the
credit-based shaper and TAS, whereas our work addresses the
priority inversion problem with deadline-based TSN and frame
preemption. Ojewale et al. [5] identified the problem of priority
inversion for preemptable traffic with timing requirements and

(a) Comparison with TAS ST (b) Comparison with TAS Class A (c) Comparison with TAS Class B

Fig. 5: End-to-end delay of 15 frames with different configurations.

Fig. 6: Maximum E2E delay for all flows.

proposed multi-level preemption, which modifies the IEEE
802.1Qbu standard and results in architecture modifictions and
higher preemption overhead. Ashjaei et al. [6] refined multi-
level preemption with a nested preemption approach that uses
a credit-based shaper to schedule frames, but still does not
follow the standard because pMAC frames are allowed to
preempt each other. Zou et al. [16] discussed the problems
of preemption with the credit-based shaper and suggested a
constant bandwidth server using multi-level preemption that
allows eMAC frames to be preempted by the pMAC frame;
their approach does not follow the standard and introduces
overhead. Patti et al. [7] proposed deadline-based TSN model
(D-TSN) but did not consider frame preemption in the MAC
layer. In contrast to the prior work, our approach considers
frame preemption, scheduling, and routing in the network
while adhering to TSN standards’ requirements.

VI. CONCLUSION

ILP-DTSN efficiently allocates frames to eMAC and pMAC
service interfaces of TSN switches. Our approach considers
frame preemption when assigning priority and incorporates a
joint scheduling and routing procedure to address the priority
inversion issue in TSN while ensuring network QoS. We have
shown that ILP-DTSN can reduce end-to-end delay up to 32%
without the need for an extra layer of preemption. Our ap-
proach reduces the likelihood of time-sensitive traffic missing
their deadlines and enhances overall network performance.

ACKNWOLEDGEMENTS

This work is partially supported by NSF CNS-2046705,
NSF ECCS-2138295, and Colorado State Bill 18-086.

REFERENCES

[1] J.-L. Scharbarg, M. Boyer, and C. Fraboul, “Can-ethernet architectures
for real-time applications,” in 2005 IEEE Conference on Emerging
Technologies and Factory Automation, vol. 2. IEEE, 2005, pp. 8–pp.

[2] “IEEE std 802.1q-2018: IEEE standard for local and metropolitan area
networks – bridges and bridged networks,” IEEE Standards Association,
Dec 2018.

[3] “Ieee standard for local and metropolitan area network–bridges and
bridged networks,” IEEE Std 802.1Q-2018 (Revision of IEEE Std
802.1Q-2014), pp. 1–1993, 2018.

[4] “Ieee standard for ethernet amendment 5: Specification and management
parameters for interspersing express traffic,” IEEE Std 802.3br-2016, pp.
1–58, 2016.

[5] M. A. Ojewale, P. M. Yomsi, and B. Nikolić, “Multi-level preemption
in tsn: feasibility and requirements analysis,” in 2020 IEEE 23rd
International Symposium on Real-Time Distributed Computing (ISORC).
IEEE, 2020, pp. 47–55.

[6] M. Ashjaei, M. Sjödin, and S. Mubeen, “A novel frame preemption
model in tsn networks,” Journal of Systems Architecture, vol. 116, p.
102037, 2021.

[7] G. Patti, L. Lo Bello, and L. Leonardi, “Deadline-aware online schedul-
ing of tsn flows for automotive applications,” IEEE Transactions on
Industrial Informatics, 2022.

[8] F. R. Abdalla Mahamid and K. Holzinger, ““time sensitive net-
working - 802.1qci”,” https://www.net.in.tum.de/fileadmin/TUM/NET/
NET-2021-05-1/NET-2021-05-1 03.pdf, accessed: 2022-12-18.

[9] D. Thiele and R. Ernst, “Formal worst-case performance analysis of
time-sensitive ethernet with frame preemption,” in 2016 IEEE 21st Inter-
national Conference on Emerging Technologies and Factory Automation
(ETFA). IEEE, 2016, pp. 1–9.

[10] P. M. Castro, I. Harjunkoski, and I. E. Grossmann, “Discrete and
continuous-time formulations for dealing with break periods: Preemp-
tive and non-preemptive scheduling,” European Journal of Operational
Research, vol. 278, no. 2, pp. 563–577, 2019.

[11] J. Falk, D. Hellmanns, B. Carabelli, N. Nayak, F. Dürr, S. Kehrer, and
K. Rothermel, “Nesting: Simulating ieee time-sensitive networking (tsn)
in omnet++,” in 2019 International Conference on Networked Systems
(NetSys). IEEE, 2019, pp. 1–8.

[12] IEEE, “Ieee standard for local and metropolitan area networks–timing
and synchronization for time-sensitive applications,” https://standards.
ieee.org/ieee/802.1AS/7121/, 2020, accessed: 2022-12-18.

[13] D. Hellmanns, L. Haug, M. Hildebrand, F. Dürr, S. Kehrer, and R. Hum-
men, “How to optimize joint routing and scheduling models for tsn using
integer linear programming,” in 29th International Conference on Real-
Time Networks and Systems, 2021, pp. 100–111.

[14] T. Park, S. Samii, and K. G. Shin, “Design optimization of frame
preemption in real-time switched ethernet,” in 2019 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2019, pp.
420–425.

[15] L. Lo Bello, M. Ashjaei, G. Patti, and M. Behnam, “Schedulability
analysis of time-sensitive networks with scheduled traffic and preemp-
tion support,” Journal of Parallel and Distributed Computing, vol. 144,
pp. 153–171, 2020.

[16] J. Zou, X. Dai, and J. A. McDermid, “retsn: Resilient and efficient
time-sensitive network for automotive in-vehicle communication,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2022.

