
1

From Weeping to Wailing: A Transitive Stealthy
Bus-off Attack

Paul Agbaje, Habeeb Olufowobi Member, IEEE, Sena Hounsinou, Gedare Bloom Senior Member, IEEE

Abstract—
The integration of the Internet of Things (IoT) devices and

solutions into passenger vehicles has transformed cars into a
complex system with intelligence and a platform for extending
information technology possibilities. These devices communicate
through in-vehicle networks that use the controller area network
(CAN) as a de facto standard for the safety-critical functionality
of the vehicles. One creative exploit against CAN is the bus-
off attack, which uses the fault tolerance capabilities of the
CAN bus to coerce a victim electronic control unit (ECU) into
the bus-off state from which it is not allowed to access the
bus. As a result, the victim ECU is unable to send or receive
messages. The WeepingCAN attack is a stealthy variation of
the bus-off attack that reduces its observability and therefore
the effectiveness of detection-based mitigation. In this paper,
we introduce three software-based improvements that greatly
increase both the efficiency and effectiveness of the WeepingCAN
attack. First, we introduce a novel zero-phase approach for
synchronizing the attack. Second, we discover an alternative
approach to disable retransmissions, which is a key capability
of WeepingCAN, that allows the attack to be conducted from
more ECUs than before. Third, we identify a transitive attack
strategy that enables an attacker to target many more ECUs
than originally possible. We evaluate our improvements experi-
mentally using a CAN benchmark and find that the zero-phase
synchronization improves the attack success rate from 75% to
over 90% and the transitive attack strategy enables all the ECUs
in the benchmark to be attacked.

Index Terms—Controller Area Network, bus-off, WeepingCAN

I. INTRODUCTION

Increasingly, embedded sensors have permeated modern
vehicles, and their interconnectedness to the Internet has
resulted in the Internet of Vehicles (IoV). Autonomous IoVs
integrate the Internet of Things (IoT), software, and emerging
network technologies to support vehicular applications for
intelligent transportation systems (ITS) [1], [2]. While exter-
nal vehicular networks allow vehicles to communicate with
other IoV entities, such as the roadside units and intelligent
devices using vehicle-to-everything technology, the controller
area network (CAN) provides an inexpensive message-based
protocol for electronic control units (ECUs) communication in
the vehicle [3], [4]. However, the ever-increasing complexity

This work is supported in part by NSF CNS-2046705 and Colorado SB18-
086. Corresponding author: Paul Agbaje.

Paul Agbaje and Habeeb Olufowobi are with the University of Texas at Ar-
lington, Arlington, TX 76019 USA (e-mail: pauloluwatowoju.agbaje@uta.edu;
habeeb.olufowobi@uta.edu).

Sena Hounsinou is with Metropolitan State University, St Paul, MN 55106
USA (e-mail: sena.houeto@metrostate.edu).

Gedare Bloom is with University of Colorado Colorado Springs, Colorado
Springs, CO 80918 USA (e-mail: gbloom@uccs.edu).

and connectedness of passenger vehicles provide opportunities
for adversaries to exploit the in-vehicle networks and ECUs
that operate the electrical and electronic systems to control
driving functions [5]–[13]. This vulnerability exposes CAN to
attacks and raises the security risks of entities in ITS. The
prior work investigates the security of the CAN because it is
the in-vehicle network used in the majority of vehicles for
the safety-critical ECUs, i.e., those controlling the powertrain.
Also, to mitigate attacks in CAN, two primary methods are
widely explored: intrusion detection systems (IDSs) [14] and
message authentication [15], [16].

The bus-off attack [5] is an interesting attack that exploits a
security vulnerability introduced by the CAN mechanisms for
fault tolerance to force an ECU to enter the bus-off state. In
the bus-off state, an ECU is not able to participate on the CAN
bus. The state is entered when an ECU’s error rate exceeds a
set threshold. This attack proceeds in two distinct phases: the
first phase consists of a cascade of transmission errors ending
with two successful transmissions, and the second phase
exhibits a repeated pattern of transmission errors followed by
successful retransmission. The cascade of errors in phase 1 is
an unambiguous feature signaling that a bus-off attack is in
progress [5], and countermeasures to bus-off rely on detecting
the cascade as a prelude to prevention.

The WeepingCAN attack [12] is a variation of the CAN
bus-off attack that removes these (and a few other) detectable
features. This attack variant introduces three key changes to
achieve lower detectability: disabling retransmissions, reces-
sive bit injections, and a skipping attack strategy to slow the
attacker’s error rate and allow it to succeed in more cases than
a greedy strategy would. With recessive bit injection, instead
of injecting a message with a dominant bit-error into the bus,
the attacker inserts a recessive bit when the victim’s message
contains a dominant bit, causing a mismatch during transmis-
sion. This approach causes the attacker’s CAN controller to
raise an error-active flag instead of the victim’s. Although the
attack has been shown to work reasonably well, the attack can
only target a limited set of victim ECUs based on the difference
between the transmission rates of the attacker and the victim.
This limitation restricts the range of potential targets and
inhibits the attacker’s capability. In addition, the proposed
methods to disable message retransmission in the WeepingCAN
attack are not available on many CAN controllers, limiting the
generalizability of the attack.

To address these limitations, we propose novel improve-
ments that broaden the attacker’s capabilities and allow for
a stealthy bus-off attack that can be better generalized to
more CAN controllers. Firstly, our approach uses zero-phase

2

synchronization to allow attackers to coordinate attacks more
effectively with the victim’s message transmissions. Secondly,
we introduce a new strategy to disable message retrans-
missions during the attack. Unlike previous approaches, our
method applies to more CAN controllers and produces less
detectable attacks. Thirdly, we propose a transitive strategy
that allows attackers to target more victim ECUs than previ-
ously possible, enhancing the attacker’s practicality and versa-
tility in complex automotive networks. With these techniques,
an attacker gains a significant advantage in executing more
effective and stealthy bus-off attacks against in-vehicle ECUs.

In summary, we make the following contributions with this
paper:
• a zero-phase synchronization approach that allows the

attacker to better align and time its attack with the victim
transmissions to improve the attack success rate;

• a new strategy to disable message retransmissions during
the attack that is available on more CAN controllers than
the prior strategies and also achieves a lower rate of
retransmissions, thus it is less detectable;

• a transitive strategy to allow the attacker to target many
more victim ECUs than possible in the prior work: Weep-
ingCAN was able to target 3 ECUs in a benchmark [12],
which we reproduce to show that the transitive approach
allows the attacker to target the full set of 6 ECUs under
different bus speeds and loads;

• analysis of attack features and possible countermeasures;
• and experimental evaluation of the improved attack.
In the next section, we define the threat model and our nota-

tion. Section III reviews CAN, the bus-off and WeepingCAN
attacks, and related work. We present our improved attack in
Section IV and evaluate its effectiveness with experimental
results in Section V. Limitations and countermeasures are
discussed in Section VI, and Section VII concludes the paper.

II. THREAT MODEL

Consistent with CAN cyberattacks in prior work [5]–[9],
[11], [12], we assume an adversary (denoted A or attacker)
that has gained complete control of the software executing
on some compromised ECU with access to the CAN bus.
The attacker can execute arbitrary code on this ECU and can
send/receive arbitrary messages on the CAN bus. Acceptance
message filtering may, in general, be bypassed by the attacker
through reconfiguring the CAN hardware registers via software
configuration commands [5]. Arbitrary code execution implies
that the attacker can program registers associated with the
CAN controller and override interrupt handlers.

The initial exploit that allows the attacker to compromise
an ECU is out of the scope of this paper, but we note
that ECUs and gateways are known to be vulnerable due to
implementation flaws [6]–[8] and that numerous off-the-shelf
OBD-II dongles are remotely exploitable [17]. From this initial
foothold, we show that an attacker can silently DoS arbitrary
ECUs.

The attacker’s goal is to successfully cause a particular
ECU (denoted V or victim) to enter the bus-off state. The
main difference between our threat model and that of much of

the prior work is that we add the constraint that the attacker
remains stealthy to escape detection techniques that rely on
observing visible features during the attack. The original
CAN bus-off attack by Cho and Shin [5] identified these
visible features, namely F1 and F2: F1 is due to a message
encountering consecutive errors, and F2 happens when the
victim observes a successful message transmission after a
consecutive pattern of errors. Notably, the original attack does
not satisfy this constraint.

We assume that the attacker has conducted an extensive
offline analysis of the target vehicle. Specifically, the attacker
has knowledge of the message parameters (ID, periodicity,
senders, and receivers) used by the ECUs on the CAN bus [9],
[18]–[22]. Based on the offline analysis, an attacker is able to
determine the set of messages that each ECU transmits. At a
minimum, WeepingCAN uses information about the messages
sent by the victim and compromised ECUs. For example,
Kulandaivel et al. [18] analyzed offline data by collecting
several minutes of CAN traffic and using the data to map
each unique source ID to its ECU. The analysis was performed
on the 2009 Toyota Prius and 2017 Ford Focus, with a false
positive rate of 0%, which includes determining the periodic
characteristics of the message IDs. Also, Bloom [12] was
able to identify a target message with a genuine preceded
ID and determine its periodicity for the WeepingCAN attack
on a 2016 Kia Optima. For our attack, we expect that, for a
given vehicle make and model, an attacker would be able to
determine offline the ECUs that satisfy this model.

Fault Model: We assume that the messages and ECUs
involved in the attack (as victim or attacker) during the span
of a bus-off attack do not incur any normal faults. This
assumption simplifies the attack analysis without sacrificing its
plausibility. In a real attack scenario, the occurrence of faults
may either increase or decrease the success rate of attacks
and countermeasures. We discuss the possible interactions of
normal faults with attacks in Section VI.

III. BACKGROUND AND RELATED WORK

We begin with an overview of CAN features before de-
scribing the WeepingCAN bus-off attack. Natale et al. [23]
comprehensively covers CAN topics, and Hu [24] provides
an excellent overview of CAN bus error handling and jitter.
Bloom [12] explains in detail the original bus-off attack in the
context of detectable features.

A. CAN Overview

CAN is a broadcast bus network that uses carrier-sense mul-
tiple access and collision detection (CSMA/CD) for communi-
cation. Each CAN controller and its connected transceiver, or
PHY, attached to the physical bus is called a CAN node. To pri-
oritize messages in the network, CAN relies on decentralized
arbitration that considers the sender’s identifier (ID). Priority is
determined based on the ID, with smaller IDs having a higher
priority when the IDs are considered as unsigned integers.
CAN encodes a logic-0 bit as a dominant signal, while logic-
1 is considered a recessive signal. Nodes in the network float
a recessive signal when idle and transmit a dominant signal by

3

Fig. 1. CAN data and remote frame format with field lengths in bits [5]. The
shaded fields are determined in software, and the light yellow shaded fields
are used by the attacker. The other fields are managed by a (hardware) CAN
controller.

driving the bus low. This mechanism allows CAN to prioritize
dominant bits, allowing smaller integers (those with a longer
prefix of 0s) to take priority over larger ones during the
arbitration process.

1) Data Frame: Fig. 1 depicts the format of a basic CAN
message frame, which is a data frame when the remote
transmission request (RTR) bit is dominant and a remote frame
when the RTR is recessive. If the ID extension (IDE) bit of a
data frame is dominant, then it is a standard frame. However,
extended frames have a slightly different format, using 29 bits
for the ID and a recessive IDE bit. In CAN, two other frame
formats are used to transmit error and overload frames. An
error frame is transmitted when an error condition is detected
on the bus, while an overload frame adds an extra delay
between data and remote frames. However, we only consider
data and error frames for this work and limit the following
review to them.

In CAN message frames, the data field can be between 0
and 8 bytes inclusive. Senders encode the size of the data field
within the data length code (DLC) field as an unsigned 4-bit
integer. Although the standard does not prohibit DLC values
between 9–15, CAN controllers generally ignore the excess
beyond 8.

The cyclic redundancy check (CRC) delimiter and two other
fields—acknowledgment (ACK) and end-of-frame (EOF)—are
fixed-size. Every other field may vary dynamically due to bit
stuffing, which is the addition of a single inverted stuff bit
after sending 5 consecutive identical bits (possibly including
a previous stuff bit). Thus, 6 identical consecutive bits is an
error unless it occurs in the last 25 bits of the frame. Each
frame is separated by at least 3 interframe space (IFS) bits,
which are all recessive, and the next dominant bit indicates the
start-of-frame (SOF) for the next message. For a successfully
transmitted frame, the last bit of the ACK, called the ACK
delimiter, is recessive, and the EOF is recessive. Thus, there
is a minimum of 11 recessive bits between consecutive (data)
frames on the bus. These 11 bits indicate the bus idle signal.

2) Fault Confinement: A key feature of CAN is its fault
tolerance and error handling mechanisms, which play an
essential role in the bus-off attack. We focus on two salient
aspects: error states and error frames.

CAN includes three error states: error-active, error-passive,
and bus-off. The state of a node is determined by a state
machine, shown in Fig. 2, based on the values of its receive
error counter (REC) and transmit error counter (TEC). For
each error that a node observes while not transmitting, it
increases its REC by 1. If an error frame occurs while a node
is transmitting, it increases its TEC by 8. The REC or TEC
is decremented by 1 for each successful receive or transmit,
respectively.

Fig. 2. CAN error state machine [5]. A node initially starts with TEC and
REC of 0 and in the error-active state. If the TEC or REC exceeds 127 the
node transitions to error-passive and will transmit error-passive flags when
it observes an error. A node transitions back to error-active when both its
TEC and REC are below 128, or it transitions to the bus-off state if TEC
exceeds 255. The CAN bus standard stipulates that a node that enters bus-
off can rejoin the network after 128 occurrences of the bus-free signal of 11
consecutive recessive bits. When a node recovers from bus-off it rejoins in
the initial state with zeroed error counters.

An error frame indicates an error condition observed by
one of the nodes on the bus. Each node that detects an error
transmits either an error-active flag consisting of six dominant
bits or an error-passive flag of six recessive bits, depending
on whether the node is in the error-active or error-passive
state, respectively. (Multiple nodes can transmit overlapping
error flags; thus, the error flag may be a combination of
between 6–12 recessive or dominant bits.) After arbitration,
two error conditions—bit error and stuff error—are detected
within a message frame. The sending node that won arbitration
monitors the bus and reads back each bit on the bus, comparing
with the bit it intended to transmit; a mismatch generates an
error flag. Each node on the bus also monitors for more than
5 consecutive identical bits, which indicates an error with bit
stuffing; multiple nodes may generate overlapping stuff error
flags. Since our attack depends on generating an error flag due
to a bit mismatch between what the attacker intends to transmit
and what is actually on the bus, we consider only errors at the
bit level and ignore errors at the frame level (e.g., bad CRC
or negative ACK).

B. Bus-off Attack

The bus-off attack leverages the fault confinement mech-
anism of CAN to drive an ECU to the bus-off state. When
an ECU reaches the bus-off state, it loses its access to the
bus and cannot transmit any message. Apart from the work
of Cho and Shin [5], different approaches have been used to
drive a victim ECU into bus-off. Rogers and Rasmussen [25]
introduce a technique that enables an attacker to push a victim
into bus-off by manipulating several bits in a data frame,
increasing the victim’s error count. The authors assume that
the attacker can arbitrarily invert the bits of the victim’s data
and error frames to cause an interruption and increase the
victim’s error counter. Murvay and Groza [26] exploit the
vulnerability of the wired-AND design of the CAN bus to
force a victim ECU into bus-off based on bit injection by using
bit banging to control the CAN transceiver. With the ability
to modify the physical representation of bits on the bus, the
attacker monitors the bus and forces the transmitted bits at a
specific frame location into a dominant state. The manipulation

4

causes the sending node to detect a bit-error, transmit an error
frame, and increment its error counter. Serag et al. [27] exploit
the deterministic recovery vulnerability of CAN, discovered
through their CANOX tool, to continuously force an ECU
into a bus-off state. The attacker targets a victim’s message
ID and deliberately causes errors through collisions. When
the victim has transitioned into the bus-off state, the attacker
reinitiates the attack to prevent the victim’s recovery process.
Iehira et al. [28] leverage the bus-off attack to spoof messages
on the CAN bus without detection by the authorized ECU.
Once the victim ECU is in the bus-off state, the attacker
injects spoofed messages into the bus. The attacker initiates
the attack by transmitting an error frame when a victim ECU
transmits a data frame on the bus. The victim detects bit-error
and increases its TEC. These attacks show the vulnerability
of CAN’s error handling mechanism, which an attacker can
leverage to drive a victim ECU into bus-off, but they all use
dominant bit errors whereas our work uses a recessive bit error
to generate a dominant error flag.

C. WeepingCAN Bus-off Attack

The WeepingCAN attack is a variation of the original bus-
off attack by Cho and Shin [5]. One limitation of the original
bus-off attack is that it exhibits detectable features that allow
intrusion detection systems to flag the attack. The Weeping-
CAN attack improves the bus-off attack by introducing varia-
tions that ensure the attack’s success without the detectable
features. By disabling the retransmission of the attacker’s
message, WeepingCAN eliminates the first detectable feature,
which relies on the cascade of retransmissions and consecutive
errors. Additionally, the WeepingCAN strategy causes the
attacker rather than the victim to initiate generating an error
flag by introducing recessive bit errors instead of dominant
bit errors. This error flag causes a bit error at the victim.
This approach prevents any overlap between successful trans-
missions and the victim’s passive error flag, thus eradicating
the second feature that allows attack detection. However, the
disadvantage of disabling retransmission is that it prevents
the attacker’s message from being successfully transmitted,
potentially pushing the attacker’s ECU into a bus-off state. To
mitigate this risk, the attacker can identify additional messages
that it can successfully transmit to maintain a TEC lower than
the victim’s ECU. Concretely, the attacker must transmit at
least 1 more message than the victim for each injection of
the attacker’s message. The victim’s ECU must also transmit
fewer than 7 other messages between injections to keep its
TEC from resetting to zero. This strategy helps the attacker
maintain control while avoiding going into bus-off.

Prior to the attack, the attacker identifies a specific, peri-
odic message v that the victim ECU transmits. To keep the
attacker’s TEC below the victim’s, Bloom provides Eq. 1 [12],
which we reproduce here:

∃v ∈MV s.t . 8 >
∑

m′∈MV

vT
m′T

<
∑

m∈MA

vT
mT

. (1)

Eq. 1 specifies a constraint on the victim ECU based on
the period of v (i.e., vT) for the attack to succeed, where

MV and MA are the set of (authentic) messages transmitted
by the victim and attacker, and mT is the period of some
message m. In addition to this constraint, the message v
must also have a preceded message, which is some message
that transmits immediately before v either due to winning
arbitration because of higher priority or being in transmission
when v is ready to transmit, i.e., interfering or blocking v’s
bus access. The success rate of the (original) bus-off attack
without preceded messages was found to be about 1%, and
reliance on preceded messages for synchronizing the attacker
with the victim increases the success rate to 90–100% [5].
Engineering real-time systems exhibit the behavior of batching
multiple periodic events (messages) at the same period and
using periods that are multiples of other periods [29]–[31].
Thus, we expect genuine preceded IDs exist in practice that
an attacker can leverage, which has been shown to be the case
by Bloom [12] and by Hounsinou et al. [32]. Bloom [12]
conducted the WeepingCAN attack on a real vehicle and
manually determined a victim message with a valid preceded
message. Also, Hounsinou et al. [32] analyzed the widely-used
HCRL dataset [33] and found that 11 out of 45 message IDs
have a unique preceded ID, while the other 34 message IDs
have between 2 and 23 distinct preceded IDs.

Given that the attacker can identify some v that satisfies
the above constraints, which can be done via offline analysis,
then the attack can proceed. The attacker fabricates an attack
message vA that has an identical prefix (including ID) as
v until a random location in the DLC or data field of the
frame where v is dominant and vA is recessive. When both v
and vA transmit synchronously, this intentional insertion of a
recessive bit creates a mismatch between what the attacker’s
ECU intended to transmit and what it actually detects on the
bus since the message with the dominant bit will transmit.
Consequently, the discrepancy causes a recessive bit-error for
the attacker. This error causes the attacker’s controller to
transmit an error-active flag that increases the attacker’s TEC
by 8. The victim sees the error flag, increments its TEC by 8,
and attempts retransmission.

The attack proceeds iteratively. First, the attacker syn-
chronizes with the victim ECU by using the periodic ap-
proach described in the original bus-off attack [5]. Then,
the attacker injects vA during the preceded message of v
with retransmissions disabled. Bloom [12] identifies two ap-
proaches to disabling retransmissions: (i) disable automatic
retransmissions for all messages, and (ii) abort transmission
on transmit error. The automatic disabling approach requires
turning retransmission off prior to enqueueing vA and on again
after its transmission fails. Aborting on transmit error uses
the CAN controller’s capability to generate an interrupt on
a TX error and to flush the CAN message buffer within the
bus idle time before the retransmission starts. The net effect
is that, depending on the other messages sent by the victim
and attacker ECUs, the victim will reach the bus-off state
without any transmission of the attack message succeeding
on the bus. Hence, the attack is considered stealthy. Note that,
however, satisfaction of Eq. 1 limits the applicability of the
attack; also, depending on how tightly the equation is satisfied,
the attacker may need to employ a skipping attack strategy that

5

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

1000000 500000 250000 125000

Data Length (Bytes)

Ti
m

e
(m

s)
Bitrate (bps)

Fig. 3. Realistic CAN Bus-off Recovery Time with 50% Bus Utilization. The
latency from start to finish to recover from the bus-off state with increasing
data lengths at commonly used CAN bitrates (125000 bps to 1000000 bps).

purposefully avoids injecting vA to allow the attacking ECU
to recover its TEC faster than the victim does [12].

Groza and Murvay [34] disregard the bus-off attack for
several reasons, including its detectable features and the fact
that (by their calculations) the victim node can recover and
rejoin the network within 1.5 ms. Although we agree about
the detectable features, the analysis of victim recovery time is
optimistic: the bus-off recovery time varies depending on bus
utilization, bitrate, and the node’s recovery policy [35]. The
estimate of 1.5 ms is feasible for the 1 Mbps bus speed below
40% utilization (for a 500 kbps bus below 30% utilization, a
250 kbps bus below 10% utilization, and a 125 kbps bus below
5% utilization, respectively) and an automatic reset on bus-off.
However, the automotive industry generally discourages using
an automatic reset—software should initiate the reset, e.g., in
an interrupt handler or application logic, and often hardware
does not even support an automatic reset capability [36] [37,
p. 86]. The bus-off recovery occurs after 128 transmissions
of 11 consecutive idle bits, which is guaranteed to happen
between consecutive messages. However, when the bus is
heavily used, there may not be additional idle bus signals
beyond the inter-frame space between messages that contribute
to a node’s bus-off recovery.

Fig. 3 shows how the recovery time increases with (average)
message data length and bitrate with a 50% bus utilization
assuming uniformly distributed (non-bursty) messages. The
number of idle bits in the gap between each data frame is
d ∗ (1−u)/u as a function of the utilization u and data frame
size d, where u represents the utilization of the bus, which
is calculated as the percentage of the total bits transmitted
out of the maximum bus bandwidth, i.e., the elapsed time
(wall clock) divided by the bitrate of the bus. Without using
extended IDs, frame sizes vary between 44 to 108 bits based
on the DLC of 0 to 8 bytes, plus additional bits for stuffing; the
maximum CAN data frame size is 129 bits, although designers
avoid such maximal stuffing in practice. With 8-byte messages
at 1 Mbps bitrate, the CAN bus-off recovery time is 1.6 ms,
while slower speed busses recover with proportionally longer
times.

Start

Create receive message
interrupt handler

Disable message filters

Check received message

Read/reset a running timer

time > threshold?

message = v?

Count received messages

Count < previous?

Update stored count

Use v for tighter
synchronization

Launch attack

Abort
retransmission

Continue attack Victim is in bus-off?

Attack successfulStop

Yes

Yes

Yes

Yes

No

No

No

No

Yes

Fig. 4. Flow diagram of bus-off attack optimizations showing zero-phase
synchronization and abort transmission on receiving preceded message.

IV. ATTACK OPTIMIZATIONS

We now describe three improvements to the Weeping-
CAN [12] attack that increases the attack effectiveness and
the range of victim targets. First, we introduce zero-phase
synchronization as a better method to synchronize the attacker
and victim ECUs than the periodic approaches used in prior
work. Second, we introduce an alternative method to disable
retransmissions of vA that enables the attack to be launched
regardless of the type of CAN controller used by the attacker’s
ECU. Third, we identify a novel transitive attack strategy that
allows an attacker to attack multiple ECUs in succession.

A. Zero-Phase Synchronization

The original and WeepingCAN bus-off attacks used periodic
synchronization of attack injections [5], [12]. The periodic
approach uses the transmission of v (or its preceded message)
to program a periodic timer that will enqueue the attack
message each time it gets triggered. However, this approach
ignores that the attacker can adapt to resynchronize with the
victim in response to online observations of bus behavior. We
use such an adaptive approach in our attack implementation
that synchronizes to a zero-phase transmission of v.

Our approach is inspired by the strictly periodic approach.
However, instead of synchronizing with some arbitrary trans-
mission of v, we attempt to re-synchronize on v when it trans-
mits with less bus interference or blocking. Such transmissions
occur with a smaller phase from v’s period, and the ideal
case is when there is no bus interference, and the transmission
occurs with zero-phase (i.e., no offset, aligned) with respect
to the period. Also, jitter—variations in the true or expected
periods—is ignored due to measurement constraints, and we

6

conspicuously expect no significant impact on the performance
of this approach.

As shown in Fig. 4, the attacker accomplishes zero-phase
synchronization by disabling message filters and creating a
receive message interrupt handler that is active for all received
messages. In this way, the interrupt handler will fire for every
message on the CAN bus. The handler logic determines if
the received message is v or not, and whether the received
message was transmitted while the bus was idle. To track the
bus idle time, the interrupt handler reads and resets a running
timer (counter) for each interrupt. If the timer exceeds the
threshold needed to transmit the received message, then we
assume the bus was idle. The handler keeps a count of how
many messages are received without an idle bus. The first
receipt of v stores the count of messages since the bus was idle,
and each subsequent receipt of v updates the stored count with
the current count if it is smaller. Each time the stored count
is updated indicates greater confidence that v encountered less
bus interference, and therefore has a smaller phase and should
be used for tighter synchronization.

We use the receipt of v to program a periodic timer that
controls the injection of vA with the (known) period of
v minus an offset to account for v transmission time and
software processing overhead. The periodic timer triggers an
interrupt during the transmission of the message that the at-
tacker expects precedes the transmission of v, and the attacker
will use this interrupt handler to inject vA. This approach does
rely on there being some preceded message that transmits
before v, but it does not need to be unique. A problem is
that if the bus is idle when the timer fires, then vA will
transmit before v does, and therefore will be detectable. To
avoid this detection, an attacker could track the time between
received messages and skip an injection if the timer indicates
the bus might be idle. (We did not, however, implement such a
strategy.) Furthermore, attackers can observe arbitrarily many
periodic transmissions of v keeping track of the reduction in
phase until it is stable.

A challenge for this approach is that the interval may
fluctuate due to bus interference and jitter. We posit, however,
that the interval will only increase due to these factors. If v
transmits later than expected, it will do so because of either
interference by higher priority messages or a substantial jitter.
In case of high priority interference, vA will be subjected to
the same interference and will therefore still synchronize suc-
cessfully. In case of large jitter, it is possible the transmission
of vA succeeds before v transmits. The jitter would need to be
large enough that v does not attempt to arbitrate immediately
after the preceded message overlapping with the enqueueing
of vA.

Zero-phase synchronization requires the capabilities to:
receive all messages (disable filters), trigger interrupts on
any message, and program two timers: one periodic and one
running timer. All the microcontrollers and CAN controllers
we have examined support these capabilities from software and
thus are viable within the assumptions of the threat model.

B. Abort Transmission on Receiving Preceded Message

We discovered another approach to disable retransmissions
of vA that is even more widely supported by commercial
CAN controllers than the two approaches described in the
original WeepingCAN attack [12]. In particular, disabling
automatic retransmissions is only available on CAN controllers
that support time-triggered CAN (TTCAN), while aborting
transmissions on transmit error is actually the most reliable
approach for attack (in the absence of other transmit errors),
but not all CAN controllers may support this approach, or may
support it imperfectly. Our novel approach instead is supported
by all CAN controllers, and therefore removes a significant
limitation of the prior work.

Every CAN controller has the ability to generate an interrupt
when a message is received. Furthermore, the interrupts can
be filtered by ID, or the ID that caused the interrupt may
be queried. This ability can be used to generate receive
interrupts on the set of preceded messages for v, assuming
that some genuine preceded messages exist. By coupling this
interrupt with the zero-phase synchronization strategy that
already uses the receive interrupts as shown in Fig. 4, the
adversary can simply assume the next receive interrupt after
enqueueing vA for transmission is caused by the preceded
message. (In case the attacking ECU transmits the preceded
message, then the attacker can instead use a transmit succeeded
interrupt to identify when the preceded message’s transmission
is successful. Without loss of generality, we say the preceded
message is received.) The success of this approach depends
on whether the interrupt is in fact triggered during the actual
preceded message of v, and therefore the abort happens during
the transmission of vA.

When the (presumed) preceded message is received, the
attacker issues a request to abort the transmission of messages
in the CAN controller’s transmission buffers. The key here is
to delay requesting the abort until after the first transmission
of vA has already started but not finished. Typical behavior for
an abort request does not preempt the message that is currently
transmitting because CAN controllers have their own internal
processor to transmit the message from the message buffer.
Note that this behavior is in contrast to requests to reset or
halt the controller, which preempts the internal processor and
therefore aborts the current transmission. Aborting a specific
message while it is in transmission however does prevent
retransmissions of that message. The behavior of aborting
messages is dependent on the CAN controller implementation,
but it is consistent across common controllers that the message
is allowed to complete transmission if it started prior to the
abort request reaching the controller. Hence, we program a
delay of about 20 bit times to allow for the bus idle time,
SOF, and arbitration of vA to occur, and then flush the transmit
buffer for the attack message.

C. Transitive Attack Strategy

The attacker can satisfy the requirement of Eq. 1 by
targeting an ECU to compromise initially based on it sending
messages at a higher frequency or in a greater quantity than the
intended victim. Even if no unique such ECU can be found,

7

we find a clever attacker can still transitively attack its victim
by first using a WeepingCAN bus-off attack against a set of
intermediate victim ECUs that individually satisfy Eq. 1 before
attacking the final victim. The basic idea of this attack is that
the attacker will iteratively bus-off and then masquerade as
one or more ECUs by transmitting their authentic messages
prior to conducting a bus-off attack against the final victim.
Thus, the attacker will increase the number of messages it
transmits and therefore recover its TEC faster.

The transitive attack requires the attacker to identify a set of
ECUs A∗ that satisfy Eq. 1 with replacement of MA by MA∗ .
To maintain low detectability, the attacker should also be able
to transmit reasonable forgeries of the messages belonging to
the ECUs in A∗. We assume that, based on the offline analysis,
an attacker can construct such forgeries, and can determine
a set of ECUs for conducting the transitive attack. We also
assume that an ECU that goes to bus-off does not recover—
if it does, then the attacker may need to detect the recovery
and attack it again. Note however that transmitting forgeries
in the transitive attack may reduce stealthiness and increase
the detectability of this attack: the attacker will inject non-
authentic message frames that rightly belong to some other
ECU in A∗ \ A.

Eq. 1 can be generalized to the case that the attacker targets
multiple messages in the set MV for conducting the bus-off
attack. In this case, the attacker could also rotate its attack
to target different messages in MV to further obfuscate the
attack behavior. We observe that the existence of genuine
preceded IDs can be coupled with the transitive attack strategy
by putting the ECU that transmits the genuine preceded ID in
A∗. Then the attacker can inject the preceded message at a
convenient time of its choice. We provided an evaluation of
this approach under different bus speeds and varying bus loads
to attest to its viability.

Example (Transitive Attack): Consider a hard case when
|MV | = |MA| = 1, i.e., the victim and attacker both transmit
one authentic message, and the attacker’s authentic message is
sent with the same period as the victim’s. Eq. 1 does not hold
as 1 6< 1. Suppose however that there exists some ECU R
that transmits a single message with double the period of the
attacker’s message, i.e., m ∈ MR and mT = 2.0 ∗ vT . Then
the attacker can target R with a WeepingCAN attack, because
Eq. 1 holds as 8 > 1 < 2, although the attacker has to use a
skipping attack strategy. Now R is in A∗ and |MA∗ | = 2 with
two messages having periods equal to 1.0∗vT and 2.0∗vT . The
attacker can attack the intended victim now, using a skipping
attack strategy, because 1 < 1.5.

V. EVALUATION

We use a benchtop CAN bus for experimental validation.
The CAN benchtop setup uses off-the-shelf hardware and in-
house/open-source1 software. Fig. 5 depicts the bus setup.
The platform includes five microcontrollers: two BeagleBone
Black (BBB), and three TM4C129EXL (TM4C) boards. BBB
and TM4C boards have built-in hardware CAN controllers
integrated with their processor chips. We connected the

1GitHub URL with open-source license will be provided.

CAN bus

TM4C – Node A TM4C– Node V TM4C– Node X

BBB BBB

VC Brakes Driver

IMC

Battery
Trans

Transceiver Transceiver Transceiver

Transceiver Transceiver

0A0
0B0
0D0

IDs
0A1
0C1

IDs
0A3
0B3

IDs

0A4
0B4

IDs
0A5
0B2
0C2

IDs

0C5

0D5
0D2

Fig. 5. 5-node CAN Benchtop Setup. The TM4C Node A acts as the attacker
in all experiments.

BBBs and TM4Cs to SN65HVD23x CAN transceivers. The
transceivers are connected via 3.3v CAN implemented in a
breadboard.

We flashed the BBB with updated U-Boot (2018.09)
firmware and Debian Stretch 9.5 (BeagleBoard.org Debian
Image 2018-10-07). We use Python with SocketCAN to inter-
act with the CAN bus using version 3.2.0 of python-can that
provides support for multiple periodic messages. Python on
Linux gives the BBB jitter especially to start communicating,
but periodic messages are supported by the kernel so they
exhibit reasonably predictable, regular message timing after
the first transmission.

We run custom baremetal code on the TM4C boards that in-
cludes both normal and attacker behavior. Baremetal provides
the least jitter, the most control over the software behavior,
and easily programmed interrupt handlers.

1) F1 Attack Detector: We used the approach described by
Cho and Shin [5] to identify consecutive errors (feature F1)
as indicative of a bus-off attack. We report the performance
of this F1 attack detector in each experiment.

A. Bus-Off Attack Experiments

We conducted two experiments using the original bus-off
attack with dominant bit errors and a reproduced synthetic
benchmark from prior work [5], [12]. The first experiment
examines zero-phase synchronization and the second evaluates
across approaches to disable retransmissions. We implement a
500 kbps CAN bus in our benchtop setup with nodes X , V ,
and A in TM4C boards to recreate a similar setup as the prior
work. Node X sends messages with ID 7 and 9 at a period
of 10 ms, and node V sends a message with ID 17 when it
receives the message with ID 7 thus also having a period of
10 ms The attacker is implemented on node A. The message
ID 9 is the genuine preceded ID of 17. Both messages are
transmitted with a period of 10 ms.

1) Zero-Phase Synchronization: Here, we examine the ef-
ficacy of zero-phase synchronization with respect to periodic
synchronization at aligning the attacker’s injected message
with the victim’s normal transmission. The attacker relies on
the approach described in Section IV-A to synchronize the
transmission of its attack message from node A with the
transmission of ID 17 by node V . A uses an interrupt handler

8

0.0 0.5 1.0 1.5 2.0Relative Time (s)

0

50

100

150

200

250
Tr
an

sm
it
Er
ro
r C

ou
nt
er
 (T

EC
)

Victim
Attacker

(a) zero-phase

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40Relative Time (s)

0

50

100

150

200

250

Tr
an

sm
it
Er
ro
r C

ou
nt
er
 (T

EC
)

Victim
Attacker

(b) periodic

Fig. 6. TEC increase of original bus-off attack with zero-phase and periodic synchronization.

to track the transmissions on the bus, and programs a timer to
10 ms minus the transmission time of message ID 17 and
one-half the transmission time of a 1-byte message at the
500 kbps bus speed. This extra half transmission time ensures
that the timer fires before a message with ID 17 is being
transmitted. This precaution allows adequate time to enqueue a
message that will synchronize seamlessly with the subsequent
transmission of message ID 17. The message with ID 17 never
transmits with 0-phase, but always transmits with the same
interference caused by IDs 7 and 9.

We examined 100 bus-off attacks using the zero-phase syn-
chronization approach. We also reproduce the direct periodic
approach proposed by Cho and Shin [5] and used in the
original WeepingCAN [12]. Fig. 6 shows the growth of TEC
with both synchronization approaches averaged over the 100
trials. (All results were nearly identical.) As expected, the
F1 detector identified every attack with each synchronization
approach and detected the 15 retransmissions caused by the
dominant bit error.

The zero-phase synchronization takes longer to align with
the victim as it waits for a transmission of v with minimal
interference. Note that the direct periodic approach works well
due to the presence of genuine preceded IDs and extremely
low bus utilization in this benchmark. These results show
that zero-phase and periodic synchronization are both viable
options when there do exist genuine preceded messages.
The zero-phase approach takes longer to synchronize with
the victim because it waits to observe a transmission of v
that has minimal bus interference. However, as we show in
the following experiments, the quality of the synchronization
achieved by the zero-phase approach can be better than the
periodic approach.

2) Disabling Retransmissions: We evaluate the three ap-
proaches for disabling retransmissions of vA: (1) disable auto-
matic retransmissions, (2) abort transmission on transmit error,
and (3) abort transmission on receiving preceded message. We
implemented each approach with the TM4C boards. They have
TTCAN capability and support interrupts on bit or stuff errors
and aborting messages selectively.

We again use the Synthetic Benchmark with the original

bus-off attack. Node X reliably transmits both preceded mes-
sages of 17, therefore attacker and victim can be perfectly
synchronized, which isolates the variable of retransmission ap-
proach. We examined 100 bus-off attacks with each approach
and measured the number of successful attacks and visible
transmissions by the attacker based on the TEC increases on
each node.

Our approach to disabling automatic retransmissions and
aborting transmission on transmit error is similar to prior
work [12]. To disable automatic retransmissions we globally
configure the CAN controller during its initialization, and to
abort the transmission on transmit error, we clear the attack
message from its transmit message buffer in the CAN interrupt
handler on an error code. For aborting the transmission on
receiving the preceded message we clear the transmit message
buffer after the interrupt handler returns to normal processing
with a slight processing delay of approximately 15 bit trans-
mission times to ensure the attack message is in transmission.

Fig. 7 shows the increase in TEC for victim and attacker
when retransmissions are disabled, which shows that our
new approach to disable retransmissions when the preceded
message is received has similar attack performance as the
prior approaches. More important, Fig. 8 shows the number
of transmissions of vA by the attacker.

The attacker transmits messages successfully because of the
dominant bit error: both disabling automatic retransmission
and aborting on the transmit error result in 18 successful
transmissions, while aborting on the receipt of the preceded
message results in zero successful transmissions. This re-
sult shows that in fact the dominant bit error injection can
potentially be used stealthily with the strategy of aborting
transmission upon receiving the preceded message. In addition,
the F1 attack detector did not identify any of the attacks when
using these approaches to disable retransmissions.

B. WeepingCAN Attack Experiments

We conducted two experiments using the WeepingCAN
attack with the improvements introduced in this paper. These
experiments use the modified SAE benchmark described by

9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7Relative Time (s)

0

50

100

150

200

250

Tr
an

sm
it
Er
ro
r C

ou
nt
er
 (T

EC
)

Victim
Attacker

(a) auto-disable

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7Relative Time (s)

0

50

100

150

200

250

Tr
an

sm
it
Er
ro
r C

ou
nt
er
 (T

EC
)

Victim
Attacker

(b) abort transmit error

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7Relative Time (s)

0

50

100

150

200

250

Tr
an

sm
it
Er
ro
r C

ou
nt
er
 (T

EC
)

Victim
Attacker

(c) abort receive preceded

Fig. 7. TEC increase of original bus-off attack without retransmissions.

Fig. 8. Transmissions of the victim’s ID with four approaches for retrans-
missions using the original bus-off dominant error injections. Classic uses
retransmissions and the other three approaches disable retransmissions.

Tindell et al. [38]. The original benchmark is not specified for
CAN, and the authors did not suggest CAN IDs to use, so we
arbitrarily use the rate monotonic approach to define message
priorities inversely to their periods (shorter period, higher
priority). Although message sizes are specified, the contents
are not; we used fixed data fields in our experiments. Each
subsystem’s periodic messages are transmitted synchronously
from the same clock, and therefore the subsystem enqueues
messages it transmits in batches. Ties caused by identical
periods are broken as follows in decreasing priority order:
vehicle controller (VC), brakes, battery, driver, inverter/motor
controller (IMC), and transmission (trans). Table I shows
the parameters for the modified SAE Benchmark arranged
according to the sending subsystem in priority order. We
placed the VC, Driver, and Brakes each on a separate TM4C,
the IMC on its own BBB, and we pair the Battery and Trans
subsystems together on one of the BBB boards.

1) Skipping Attack with Zero-Phase Synchronization: We
conducted 75 WeepingCAN attacks skipping 5 iterations per
attack with VC attacking Brakes using zero-phase and peri-
odic synchronization. With zero-phase synchronization, 86.7%
of the attacks succeeded in pushing the Brakes to bus-off,
while periodic synchronization succeeded in 78.1% of the
attacks. The minimum and median number of transmissions
of vA was 0 for both cases, with a maximum of 141 and
160 transmissions, respectively. The trials that failed did not
manage to synchronize with the victim correctly and resulted
in mis-timed injections. Figure 9 shows a violin plot depicting
the distribution of transmissions of vA. Zero transmissions

TABLE I
PARAMETERS FOR MODIFIED SAE BENCHMARK [38]

Sender CAN ID (hex) Size (B) Period (ms)

VC
A0 1 5
B0 6 10
D0 1 1000

Brakes A1 2 5
C1 1 100

Battery
B2 1 10
C2 4 100
D2 3 1000

Driver A3 1 5
B3 2 10

IMC A4 2 5
B4 2 10

Trans
A5 1 5
C5 1 100
D5 1 1000

indicates good synchronization and stealthiness, while higher
numbers are less stealthy and have been caused by poor/lost
synchronization between the attacker and victim. The F1
attack detector identified 6.7% of the attacks with zero-phase
synchronization and 2.7% of the attacks with period-based
synchronization. Fig. 9 shows the number of transmissions
prior to bus-off for the SAE Benchmark was often but not
always 0. These results show that, although the zero-phase
synchronization achieves a higher attack success rate, it may
reduce stealthiness. Based on preliminary investigation, we
suspect this contradiction is due to early transmissions of the
attack message with the zero-phase approach, and suggest that
an attacker who can carefully tune synchronization to the bus
behavior can likely achieve much better attack results.

2) Transitive Attack: Here we use the SAE Benchmark to
evaluate using the transitive strategy to disable ECUs that are
otherwise unassailable by the original WeepingCAN attack.
Based on Eq. 1, the VC, Driver, and IMC subsystems cannot
be directly attacked, but any subsystem that first compromises
the Battery, Brakes, or Trans subsystem can then compromise
any other subsystem by the transitive attack strategy (with
skipping). We use the VC subsystem to first conduct a stealthy
WeepingCAN attack against the Brakes, as in the preceding
experiment, and then launch the transitive attack against the
Driver subsystem, which does not require any skipping when
combining the VC and Brakes messages. Fig. 10 shows
representative results for a successful transitive attack, an
attack that succeeds against the Brakes but fails against the

10

0-phase periodic
Synchronization Approach

0

20

40

60

80

100

120

140

160

Tr
an

sm
iss

io
ns

 o
f v

Fig. 9. Transmissions of the victim’s ID with the SAE Benchmark and
skipping 5 messages per injection. Each violin shows the distribution of
transmission counts over 75 attacks.

Driver, and an attack that fails. The primary reason for failure
is loss of synchronization with the victim, which is a challenge
in the SAE Benchmark due to high bus utilization.

We conducted 200 attacks with each approach for disabling
retransmissions. Table II summarizes the key results of attack
success rates and number of transmissions by the attacker with
respect to the specific approach for disabling retransmissions.
Fig. 11 shows the violin plots for the number of injections
of vA prior to the bus-off of the victim, which again is an
indicator of the stealthiness of the attack. The original (Clas-
sic) bus-off attack using periodic synchronization—but with
recessive injections—is shown as a baseline for comparison;
we found that it succeeds roughly as often in disabling one
ECU, does poorly with the transitive step, and has a high
count of detectable transmissions of the victim message prior
to attack success. Of course, it also exhibits high F1 detection
rates.

An important point here is that disabling automatic re-
transmissions yielded zero successful attacks (regardless of
synchronization approach), which we attribute to the excessive
interference in the SAE Benchmark and that this approach
will not retransmit the attack message if it loses arbitration.
The other two approaches show adequate yet imperfect at-
tack capability. Zero-phase synchronization can achieve higher
attack success rates than periodic synchronization, although
not consistently. Lower attack success rates tended to exhibit
more transmissions of the injected message by the attacker
and higher F1 detection rates, which we again suspect is due
to poor synchronization with the victim. Fig. 11(a) shows the
transmissions of the brake message by the attacking VC ECU,
and Fig. 11(b) shows transmissions of the driver message.

3) Transitive Attack Under Different Bus Speeds: Using
the SAE benchmark, we conduct the transitive attack in
Section V-B2 under different bus speeds. In this experiment,
we implemented the zero-phase synchronization and abort
message transmission when transmit error is detected. We first
carry out a stealthy attack with the VC against the Brakes be-
fore launching a transitive attack against the Driver subsystem.

Fig. 12(a) shows the representative TEC growth of the attacker
and victims using 125 Kbps bus speed, Fig. 12(b) shows
the result when the bus speed is 250 Kbps, and Fig. 12(c)
depicts the result of 500 Kbps bus speed. Although the attack
against the Brakes started a bit later for 500 kbps bus speed,
the three experiments show identical TEC changes. In each
experiment, the attacker’s TEC remains in the error-passive
region, then recovers while driving the victim ECUs to the
bus-off state. These results indicate that the transitive attack
approach applied to varying bus speeds yields similar results.

4) Transitive Attack Under Different Bus Loads and Varied
Message Sets: Here, we implement a 500 kbps CAN bus, vary-
ing the number of messages on the bus from 800 to approxi-
mately 1400 messages per second, and conduct WeepingCAN
attacks using the transitive strategy to drive victim ECUs to
the bus-off state. To achieve this, we changed the modified
SAE benchmark message periods as shown in Table III and
performed 75 attacks using zero-phase synchronization. We
use the VC to stealthily attack the Brakes before employing the
transitive strategy to attack the Driver subsystem. In addition,
we randomly varied the messages transmitted by each ID
before launching the attacks against the victims. We evaluate
the delay experienced by the victims before each successful
attack under each bus load. For each experiment, the results
are nearly identical. Fig. 13 shows the average delay of each
victim ECU before entering the bus-off state. We noticed that
the time to bus off state increases with increasing bus load
and posit that this is due to higher priority messages winning
arbitration before the victim’s messages get transmitted on the
bus. The success of the bus-off attacks under various bus loads
and different message sets demonstrates the feasibility of using
the transitive attack approach against ECUs.

C. Performance of In-Vehicle IDSs Against the Transitive
Attack

Existing defenses based on the timing of messages, sta-
tistical thresholds, and machine learning (ML) based have
been proposed for detecting attacks on the CAN bus [39]–
[42]. These IDSs use the inter-arrival time of CAN signals
or the frequency of messages over a specific time window
to identify anomalies on the bus. Although these IDSs have
shown positive results in detecting attacks such as denial
of service, fuzzy, and spoofing attacks, they are unreliable
when deployed against our transitive attack. We implement
the transitive attack against timing-based IDSs using the inter-
arrival time and frequencies of messages. We also analyzed the
attack’s performance against the ML detection approach based
on the recurring patterns of message IDs and statistical-based
IDSs that monitor the entropy change in CAN IDs [41], [43],
[44]. We implemented the 500 Kbps CAN bus and performed
100 different attacks with zero phase synchronization. We find
that all the IDSs cannot distinguish between legitimate and
attack messages. In addition, the IDSs are unable to detect
when the brakes or driver subsystems move into a bus-off state.
Since the proposed attack uses zero-phase synchronization to
align the attack message with the transmission of the victim,
these IDSs are unreliable for accurately detecting deviations
caused by WailingCAN on the bus.

11

0 1 2 3 4 5 6 7
Relative Time (s)

0

50

100

150

200

250

Tr
an
sm

it
Er
ro
r C

ou
nt
er
 (T

EC
)

Brakes (Victim 1)
V/C (Attacker)
Driver (Victim 2)

(a) Success

0 1 2 3 4 5 6 7
Relative Time (s)

0

50

100

150

200

250

Tr
an
sm

it
Er
ro
r C

ou
nt
er
 (T

EC
)

Brakes (Victim 1)
V/C (Attacker)
Driver (Victim 2)

(b) Partial

0 1 2 3 4 5 6 7
Relative Time (s)

0

1

2

3

4

5

6

7

8

Tr
an

sm
it

Er
ro

r C
ou

nt
er

 (T
EC

)

Brakes (Victim 1)
V/C (Attacker)
Driver (Victim 2)

(c) Fail

Fig. 10. Representative TEC increase of successful and unsuccessful transitive attacks.

TABLE II
TRANSITIVE ATTACK SUCCESS RATES AND STEALTHINESS

Retransmit Policy Brakes Driver VC Transmits F1 Det. Rate
Bus-Off Bus-Off min med. Brakes Driver

Classic Bus-off 84.5% 19.5% 46 2604 98.0% 85.5%
Disable Automatic 0% 0% 0 188 N/A N/A
TX Error, 0-Phase 90.5% 84.5% 0 38 0.5% 0.0%
TX Error, Periodic 80.5% 74.0% 38 38 0% 1.5%

RX Preceded, 0-Phase 95.8% 74.1% 0 0 0.5% 11.4%
RX Preceded, Periodic 91.0% 97.5% 0 0 0.5% 0.0%

classic tx error
0phase

tx error
periodic

rx precede
0phase

rx precede
periodic

0

100

200

300

400

500

600

Tr
an

sm
iss

io
ns

 o
f v

Victim 1 (Brakes)

(a) Brakes Victim

classic tx error
0phase

tx error
periodic

rx precede
0phase

rx precede
periodic

0

1000

2000

3000

4000

5000

Tr
an

sm
iss

io
ns

 o
f v

Victim 2 (Driver)

(b) Driver Victim

Fig. 11. Transmissions of the victim message by the attacker with the SAE Benchmark and a transitive attack strategy. Each violin shows the distribution of
transmission counts over 200 attacks.

D. Secure Transceiver Countermeasure

A promising countermeasure to CAN attacks is to use secure
CAN transceivers such as the NXP TJA115x [45]. Secure
transceivers are in early stages of production, and it is not
clear if they will be adopted ubiquitously by industry.

We attached a secure CAN transceiver (prototype) to the
attacker VC node in the CAN benchtop setup replacing the
SN65HVD23x CAN PHY. We configured the transceiver with
transmission pass-list (TPL) filters to allow the attacker to
transmit only its authentic message IDs. The TPL generates
an error flag in case a message transmission completes a full
frame (through the CRC) successfully with an ID that is not in
the allowed list. We attempted the following attacks: a classic
bus-off attack with the dominant bit-error injection, the origi-
nal WeepingCAN attack with recessive bit-error injections and
disabled retransmissions, and the transitive attack introduced
in this paper. We found that the secure transceiver prevents

the classic bus-off attack from working, but just setting the
TPL filters does not prevent the original WeepingCAN bus-off
attack. Fig. 14 shows the increases in the attacker and victim
TEC for the WeepingCAN attack when the TPL filters are
in place. (This example used the zero-phase synchronization
with abort on receiving preceded message and skipping one
message per injection, but other attack configurations are
similar.) Instead of going to bus-off, the attacker reaches the
error-passive state and stays just above the passive threshold
going between TEC 134 and 127 while continuing to cause
bus errors synchronized with the victim. Eventually, the victim
reaches the bus-off state. Despite the success of a direct
WeepingCAN attack, the attacker is unable to employ the
transitive attack strategy, because the TPL prevents spoofing
the first victim’s messages. Thus, the attacker ends up in the
bus-off state while attacking the second victim.

12

(a) 125 Kbps (b) 250 Kbps (c) 500 Kbps

Fig. 12. Representative TEC increase of successful transitive attacks under different bus speeds.

TABLE III
PARAMETERS FOR MODIFIED SAE BENCHMARK FOR DIFFERENT BUS LOADS

Sender CAN ID (hex) Size (B) Period (ms)
800 messages 1000 messages 1200 messages 1400 messages

VC
A0 1 5 5 5 5
B0 6 100 10 10 10
D0 1 1000 1000 1000 1000

Brakes A1 2 5 5 5 5
C1 1 1000 100 100 100

Battery
B2 1 10 10 10 10
C2 4 100 100 100 100
D2 3 1000 1000 1000 1000

Driver A3 1 5 5 5 5
B3 2 1000 100 10 10

IMC A4 2 100 10 5 5
B4 2 1000 100 100 10

Trans
A5 1 10 10 10 5
C5 1 100 100 100 100
D5 1 1000 1000 1000 1000

Fig. 13. Average delay of victims before bus-off

VI. DISCUSSION

The optimizations to WeepingCAN require similar capabil-
ities as the original attack and our approach is generalizeable:
the assumptions of the threat model and required capabilities
for the attack are satisfied by all modern vehicles that use
CAN. Using the techniques we have introduced in this paper,
an attacker can improve the success rate of the bus-off attack
while reducing detectability. In addition, attackers can combine
these optimizations to produce even more devastating and

Fig. 14. TEC Growth for WeepingCAN Attack with secure transceiver on
attacker node using transmission pass-list filters.

effective attack scenarios.
We encourage industry to develop and adopt secure tech-

nology in the transceiver logic, which is uniquely capable of
implementing reference monitor functions between a compro-
mised microcontroller and the bus. For protection against bus-
off attacks, it seems that the secure CAN transceivers must be
used by all nodes that an attacker may compromise.

Another hardware-based approach that may work to detect
these attacks due to the transmission of active error frames is

13

CopyCAN [46], which uses a custom CAN controller to track
protected ECUs’ TECs and detect if an ECU reaches the bus-
off state. This approach might detect the effect of the stealthy
bus-off attack because the error flags are visible on the bus,
but it does require special hardware. Interestingly, CopyCAN
does not detect the original bus-off attack because the passive
error flags are not observable on the bus. A clever attacker
might switch between recessive and dominant error injections
to hide from such detection.

MAuth-CAN [47] is a CAN bus authentication mechanism
that aims for resilience of the authenticator from bus-off
attacks using off-the-shelf hardware. The authors propose the
use of two CAN interfaces and switching from one to the
other in case the TEC exceeds 96. In this way, the attacker’s
TEC will reach 128 and become error-passive before the
authenticator. The authenticator furthermore can prevent the
fabrication of messages following a bus-off attack against
other CAN nodes, although it does not prevent or detect
the bus-off attack itself. It is also not clear if the MAuth-
CAN authenticator is resilient to the less-greedy WeepingCAN
approach with attack injection skipping and the proposed
transitive attacks. Also, MAuth-CAN copies the remaining
messages in the transmission and reception buffers of the
affected CAN controller to the micro-controller whenever
there is a switch from one CAN interface to another. However,
with new messages being received from the bus while copying
from one buffer to the other, the absence of an explicit buffer
management technique leads to priority inversion and latency
issues for incoming messages.

As with the original bus-off attack, physical-layer mecha-
nisms might detect the simultaneous transmissions of identical
bits by multiple ECUs [48]–[53]. Adoption of these mecha-
nisms however may be challenging due to the need for custom
hardware, and they can be attacked themselves [9], [11]. One
open problem for such mechanisms in the presence of both
stealthy and original bus-off attacks however is how to know
which ECU is to blame for the attack. Another possibility is to
combine the physical-layer attacker identification with active
error flag transmission by detecting that a single ECU (based
on its physical characteristics) is sending repeated active error
flags during transmission by another ECU. This combination
of techniques may be prone to false positives due to noisy bus
conditions, and it still requires special hardware to implement.

In designing countermeasures for the bus-off attack, intru-
sion detection systems that can recognize essential features
that adequately represent the relationship among ECUs may
help detect the improved bus-off attack. One way to recognize
these features may be to model the probability of an ECU
going to bus-off. Once modeled, standard optimization or clas-
sification techniques can be used to determine parameters or
features for an IDS. In addition, machine learning techniques
can be explored to develop a predictive model that can detect
real-time bus-off attacks. The model can be trained on the
historical data to recognize the relationship among ECUs and
identify the patterns and anomalies in message transmission
behavior that indicate attack-induced bus-off states.

Although we have ignored jitter and normally occurring
faults in our model—as jitter is a feature of the clock signal

we cannot measure—the performance impact is negligible in
the experiments. We have quantified the model performance
and assume some inaccuracies could be due to random jitter
or other assumptions that do not hold in practice. Furthermore,
a vehicle may have highly variable fault rates depending on
operating conditions and normal wear and tear. An aggressive
yet practical fault model may consider approximately 30
faults per second, or roughly one fault every 33 millisec-
onds [54]. Faults provide opportunities for the attacker to
hide its behavior as plausibly naturally-occurring errors, and
detection techniques that ignore the fault model will incur
false positives that undermine their effectiveness and utility for
triggering recovery. Modeling faults—for attack and defense—
is an important area to consider, especially in the design and
evaluation of countermeasures.

The proposed zero-phase synchronization relies on the as-
sumption that there will be a preceding message on the bus
before the transmission of v. However, the attack could be
detected if there are no preceding messages or if the bus
is idle when the timer fires. We suggest that the attacker
could track the time between received messages and skip an
injection if the timer indicates the bus might be idle. Future
work can validate the attack’s effectiveness with such an
attack strategy or quantify the effect of bus interference and
jitter on the effectiveness of the zero-phase synchronization
technique. Although we posit that the attack interval will only
increase due to the factors, more rigorous experiments can be
performed to substantiate these claims.

Although disabling transmission on receiving preceded mes-
sages may not be as reliable as the prior approach of aborting
transmissions on transmit error, we do not see this as a
limitation. Instead, we view it as a trade-off between effective-
ness and feasibility. Furthermore, our approach is supported
by all CAN controllers, making it a practical and viable
option for attackers. In contrast, the prior approaches require
specific CAN controllers to work. However, there are still
areas for improvement, such as exploring more sophisticated
synchronization methods or developing countermeasures to
detect and prevent these attacks.

The proposed transitive attack strategy requires the attacker
to construct forgeries that are reasonable enough to maintain
low detectability. While this assumption is plausible, future
work can explore techniques for constructing forgeries that
are harder to detect or that do not require knowledge of the
victim’s ECUs. In addition, classification or optimization tech-
niques might reduce the time or difficulty of the identification
of A∗ ECUs that can be used to satisfy a transitive attack.

VII. CONCLUSION

In this paper, we identified three improvements to the
WeepingCAN stealthy CAN bus-off attack. We evaluated these
improvements with reproducible benchmarks and have shown
that some methods can achieve high attack success rates
(75%–97%) under realistic bus loads. The transitive attack
strategy makes it possible for an attacker to target many more
victims with the stealthy WeepingCAN attack than previously
known. We examined the efficacy of straightforward adoption

14

of secure transceiver hardware, and found that they can prevent
the classic bus-off attack and the transitive optimization we
introduced, but that they may not address the WeepingCAN
attack directly by themselves. We discussed several methods
that may prove useful to help thwart the attack, but Weeping-
CAN and its variants remain open problems to solve.

REFERENCES

[1] H. Olufowobi and G. Bloom, “Chapter 16 - Connected Cars:
Automotive Cybersecurity and Privacy for Smart Cities,” in Smart
Cities Cybersecurity and Privacy, D. B. Rawat and K. Z. Ghafoor,
Eds. Elsevier, Jan. 2019, pp. 227–240. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/B9780128150320000160

[2] N. Zhao, X. Zhao, M. Chen, G. Zong, and H. Zhang, “Resilient
distributed event-triggered platooning control of connected vehicles
under denial-of-service attacks,” IEEE Transactions on Intelligent Trans-
portation Systems, 2023.

[3] L. Yang, A. Moubayed, and A. Shami, “Mth-ids: a multitiered hybrid
intrusion detection system for internet of vehicles,” IEEE Internet of
Things Journal, vol. 9, no. 1, pp. 616–632, 2021.

[4] P. Agbaje, A. Anjum, A. Mitra, E. Oseghale, G. Bloom, and H. Olu-
fowobi, “Survey of interoperability challenges in the internet of vehi-
cles,” IEEE Transactions on Intelligent Transportation Systems, vol. 23,
no. 12, pp. 22 838–22 861, 2022.

[5] K.-T. Cho and K. G. Shin, “Error Handling of In-Vehicle Networks
Makes Them Vulnerable,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security,
ser. CCS ’16. New York, NY, USA: Association for Computing
Machinery, 2016, pp. 1044–1055, vienna, Austria. [Online]. Available:
https://doi.org/10.1145/2976749.2978302

[6] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage,
“Experimental Security Analysis of a Modern Automobile,” in 2010
IEEE Symposium on Security and Privacy, May 2010, pp. 447–462.

[7] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Sav-
age, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno, “Comprehensive
Experimental Analyses of Automotive Attack Surfaces,” in 20th USENIX
Security Symposium (USENIX Security ’11). San Francisco, CA, USA:
USENIX Association, 2011, pp. 447–462.

[8] C. Miller and C. Valasek, “Remote exploitation of an unaltered passenger
vehicle,” Black Hat USA, vol. 2015, p. 91, 2015.

[9] M. Foruhandeh, Y. Man, R. Gerdes, M. Li, and T. Chantem, “SIMPLE:
Single-Frame Based Physical Layer Identification for Intrusion
Detection and Prevention on in-Vehicle Networks,” in Proceedings
of the 35th Annual Computer Security Applications Conference, ser.
ACSAC ’19. New York, NY, USA: Association for Computing
Machinery, 2019, pp. 229–244, event-place: San Juan, Puerto Rico.
[Online]. Available: https://doi.org/10.1145/3359789.3359834

[10] S. Mukherjee, H. Shirazi, I. Ray, J. Daily, and R. Gamble, “Practical
DoS Attacks on Embedded Networks in Commercial Vehicles,” in
Information Systems Security, ser. Lecture Notes in Computer Science,
I. Ray, M. S. Gaur, M. Conti, D. Sanghi, and V. Kamakoti, Eds. Cham:
Springer International Publishing, 2016, pp. 23–42.

[11] S. U. Sagong, X. Ying, A. Clark, L. Bushnell, and R. Poovendran,
“Cloaking the Clock: Emulating Clock Skew in Controller Area Net-
works,” in 2018 ACM/IEEE 9th International Conference on Cyber-
Physical Systems (ICCPS), Apr. 2018, pp. 32–42, porto, Portugal.

[12] G. Bloom, “WeepingCAN: A Stealthy CAN Bus-off Attack,” in Work-
shop on Automotive and Autonomous Vehicle Security. Internet Society,
Feb. 2021.

[13] P. Bajpai, R. Enbody, and B. H. Cheng, “Ransomware Targeting
Automobiles,” in Proceedings of the Second ACM Workshop on
Automotive and Aerial Vehicle Security, ser. AutoSec ’20. New York,
NY, USA: Association for Computing Machinery, Mar. 2020, pp.
23–29. [Online]. Available: https://doi.org/10.1145/3375706.3380558

[14] C. Young, J. Zambreno, H. Olufowobi, and G. Bloom, “Survey of
Automotive Controller Area Network Intrusion Detection Systems,”
IEEE Design Test, vol. 36, no. 6, pp. 48–55, Dec. 2019.

[15] B. Groza and P.-S. Murvay, “Security Solutions for the Controller
Area Network: Bringing Authentication to In-Vehicle Networks,” IEEE
Vehicular Technology Magazine, vol. 13, no. 1, pp. 40–47, Mar. 2018.

[16] O. Ikumapayi, H. Olufowobi, J. Daily, T. Hu, I. C. Bertolotti, and
G. Bloom, “Canasta: Controller area network authentication schedu-
lability timing analysis,” IEEE Transactions on Vehicular Technology,
vol. 72, no. 8, pp. 10 024–10 036, 2023.

[17] H. Wen, Q. A. Chen, and Z. Lin, “Plug-N-Pwned: Comprehensive Vul-
nerability Analysis of OBD-II Dongles as A New Over-the-Air Attack
Surface in Automotive IoT,” 2020, pp. 949–965. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity20/presentation/wen

[18] S. Kulandaivel, T. Goyal, A. K. Agrawal, and V. Sekar, “CANvas:
Fast and Inexpensive Automotive Network Mapping,” in 28th USENIX
Security Symposium (USENIX Security 19). Santa Clara, CA: USENIX
Association, Aug. 2019, pp. 389–405. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity19/presentation/kulandaivel

[19] H. Olufowobi, U. Ezeobi, E. Muhati, G. Robinson, C. Young,
J. Zambreno, and G. Bloom, “Anomaly Detection Approach Using
Adaptive Cumulative Sum Algorithm for Controller Area Network,”
in Proceedings of the ACM Workshop on Automotive Cybersecurity,
ser. AutoSec ’19. New York, NY, USA: ACM, 2019, pp.
25–30, event-place: Richardson, Texas, USA. [Online]. Available:
http://doi.acm.org/10.1145/3309171.3309178

[20] H. Olufowobi, C. Young, J. Zambreno, and G. Bloom, “SAIDuCANT:
Specification-Based Automotive Intrusion Detection Using Controller
Area Network (CAN) Timing,” IEEE Transactions on Vehicular Tech-
nology, vol. 69, no. 2, pp. 1484–1494, Feb. 2020, conference Name:
IEEE Transactions on Vehicular Technology.

[21] M. D. Pesé, T. Stacer, C. A. Campos, E. Newberry, D. Chen, and
K. G. Shin, “LibreCAN: Automated CAN Message Translator,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’19. New York, NY, USA:
Association for Computing Machinery, 2019, pp. 2283–2300, london,
United Kingdom. [Online]. Available: https://doi.org/10.1145/3319535.
3363190

[22] U. Ezeobi, H. Olufowobi, C. Young, J. Zambreno, and G. Bloom,
“Reverse Engineering Controller Area Network Messages using Unsu-
pervised Machine Learning,” IEEE Consumer Electronics Magazine, pp.
1–1, 2020, conference Name: IEEE Consumer Electronics Magazine.

[23] M. D. Natale, H. Zeng, P. Giusto, and A. Ghosal, Understanding and
Using the Controller Area Network Communication Protocol: Theory
and Practice. New York: Springer-Verlag, 2012. [Online]. Available:
https://www.springer.com/gp/book/9781461403135

[24] T. Hu, “Deterministic and flexible communication for real-time embed-
ded systems,” PhD Thesis, Ph. D Thesis, 2015.

[25] M. Rogers and K. Rasmussen, “Silently disabling ecus and enabling
blind attacks on the can bus,” arXiv preprint arXiv:2201.06362, 2022.

[26] P.-S. Murvay and B. Groza, “Dos attacks on controller area networks
by fault injections from the software layer,” in Proceedings of the 12th
International Conference on Availability, Reliability and Security, 2017,
pp. 1–10.

[27] K. Serag, R. Bhatia, V. Kumar, Z. B. Celik, and D. Xu, “Exposing new
vulnerabilities of error handling mechanism in {CAN},” in 30th USENIX
Security Symposium (USENIX Security 21), 2021, pp. 4241–4258.

[28] K. Iehira, H. Inoue, and K. Ishida, “Spoofing attack using bus-off attacks
against a specific ecu of the can bus,” in 2018 15th IEEE Annual
Consumer Communications & Networking Conference (CCNC). IEEE,
2018, pp. 1–4.

[29] A. Minaeva, B. Akesson, Z. Hanzálek, and D. Dasari, “Time-triggered
co-scheduling of computation and communication with jitter require-
ments,” IEEE Transactions on Computers, vol. 67, no. 1, pp. 115–129,
2017.

[30] H. Chishiro, “Multiprocessor semi-fixed-priority scheduling,” Journal of
Information Processing, vol. 26, pp. 202–211, 2018.

[31] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world automotive
benchmarks for free,” in 6th International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems (WATERS),
vol. 130, 2015.

[32] S. Hounsinou, M. Stidd, U. Ezeobi, H. Olufowobi, M. Nasri, and
G. Bloom, “Vulnerability of controller area network to schedule-based
attacks,” in 2021 IEEE Real-Time Systems Symposium (RTSS), 2021, pp.
495–507.

[33] H. Lee, S. H. Jeong, and H. K. Kim, “Otids: A novel intrusion
detection system for in-vehicle network by using remote frame,”
in 2017 15th Annual Conference on Privacy, Security and Trust
(PST), vol. 00, Aug 2017, pp. 57–5709. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/PST.2017.00017

[34] B. Groza and P.-S. Murvay, “Efficient Intrusion Detection With Bloom
Filtering in Controller Area Networks,” IEEE Transactions on Infor-
mation Forensics and Security, vol. 14, no. 4, pp. 1037–1051, Apr.

15

2019, conference Name: IEEE Transactions on Information Forensics
and Security.

[35] H. Olufowobi, S. Hounsinou, and G. Bloom, “Controller Area
Network Intrusion Prevention System Leveraging Fault Recovery,” in
Proceedings of the ACM Workshop on Cyber-Physical Systems Security
& Privacy, ser. CPS-SPC’19. New York, NY, USA: Association for
Computing Machinery, 2019, pp. 63–73, event-place: London, United
Kingdom. [Online]. Available: https://doi.org/10.1145/3338499.3357360

[36] “M can Busoff Recovery Handling,” Robert Bosch GmbH,
Application Note M CAN AN004, Nov. 2019. [Online]. Avail-
able: https://www.bosch-semiconductors.com/media/ip modules/pdf 2/
m can/m can an004 v1-0 busoff recovery handling.pdf

[37] “TCAN4550-Q1 Automotive Controller Area Network Flexible Data
Rate (CAN FD) System Basis Chip with Integrated Controller and
Transceiver,” Texas Instruments, Tech. Rep. sllsez5d, Jun. 2022.

[38] K. Tindell, A. Burns, and A. J. Wellings, “Calculating controller
area network (can) message response times,” Control Engineering
Practice, vol. 3, no. 8, pp. 1163–1169, Aug. 1995. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0967066195001128

[39] M. R. Moore, R. A. Bridges, F. L. Combs, M. S. Starr, and S. J. Prowell,
“Modeling inter-signal arrival times for accurate detection of can bus
signal injection attacks: a data-driven approach to in-vehicle intrusion
detection,” in Proceedings of the 12th Annual Conference on Cyber and
Information Security Research, 2017, pp. 1–4.

[40] C. Young, H. Olufowobi, G. Bloom, and J. Zambreno, “Automotive
intrusion detection based on constant can message frequencies across
vehicle driving modes,” in Proceedings of the ACM Workshop on
Automotive Cybersecurity, 2019, pp. 9–14.

[41] M. Hanselmann, T. Strauss, K. Dormann, and H. Ulmer, “Canet: An
unsupervised intrusion detection system for high dimensional can bus
data,” Ieee Access, vol. 8, pp. 58 194–58 205, 2020.

[42] P. Agbaje, A. Anjum, A. Mitra, G. Bloom, and H. Olufowobi, “A
framework for consistent and repeatable controller area network ids
evaluation,” in Fourth International Workshop on Automotive and Au-
tonomous Vehicle Security, 2022.

[43] M. Müter and N. Asaj, “Entropy-based anomaly detection for in-vehicle
networks,” in 2011 IEEE Intelligent Vehicles Symposium (IV). IEEE,
2011, pp. 1110–1115.

[44] A. Paul and M. R. Islam, “An artificial neural network based anomaly
detection method in can bus messages in vehicles,” in 2021 International
Conference on Automation, Control and Mechatronics for Industry 4.0
(ACMI). IEEE, 2021, pp. 1–5.

[45] B. Elend and T. Adamson, “Cyber security enhancing CAN
transceivers,” in Proceedings of the 16th International CAN Conference,
2017.

[46] S. Longari, M. Penco, M. Carminati, and S. Zanero, “CopyCAN:
An Error-Handling Protocol Based Intrusion Detection System for
Controller Area Network,” in Proceedings of the ACM Workshop on
Cyber-Physical Systems Security & Privacy, ser. CPS-SPC’19. New
York, NY, USA: Association for Computing Machinery, 2019, pp.
39–50, event-place: London, United Kingdom. [Online]. Available:
https://doi.org/10.1145/3338499.3357362

[47] H. J. Jo, J. H. Kim, H.-Y. Choi, W. Choi, D. H. Lee, and I. Lee,
“MAuth-CAN: Masquerade-Attack-Proof Authentication for In-Vehicle
Networks,” IEEE Transactions on Vehicular Technology, pp. 1–1, 2019.

[48] K.-T. Cho and K. G. Shin, “Fingerprinting electronic control units
for vehicle intrusion detection,” in 25th USENIX Security Symposium
(USENIX Security 16), 2016, pp. 911–927.

[49] ——, “Viden: Attacker identification on in-vehicle networks,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 1109–1123. [Online].
Available: https://doi.org/10.1145/3133956.3134001

[50] W. Choi, K. Joo, H. J. Jo, M. C. Park, and D. H. Lee, “VoltageIDS:
Low-Level Communication Characteristics for Automotive Intrusion
Detection System,” IEEE Transactions on Information Forensics and
Security, vol. 13, no. 8, pp. 2114–2129, Aug. 2018.

[51] S. Halder, M. Conti, and S. K. Das, “COIDS: A Clock Offset
Based Intrusion Detection System for Controller Area Networks,”
in Proceedings of the 21st International Conference on Distributed
Computing and Networking, ser. ICDCN 2020. Kolkata, India:
Association for Computing Machinery, Jan. 2020, pp. 1–10. [Online].
Available: https://doi.org/10.1145/3369740.3369787

[52] M. Kneib, O. Schell, and C. Huth, “EASI: Edge-Based Sender Identi-
fication on Resource-Constrained Platforms for Automotive Networks,”
in Network and Distributed Systems Security Symposium (NDSS ’20),
San Diego, CA, Feb. 2020.

[53] J. Zhou, P. Joshi, H. Zeng, and R. Li, “BTMonitor: Bit-time-based
Intrusion Detection and Attacker Identification in Controller Area
Network,” Nov. 2019. [Online]. Available: https://doi.org/10.1145/
3362034

[54] I. Broster, A. Burns, and G. RodrÍguez-Navas, “Timing Analysis
of Real-Time Communication Under Electromagnetic Interference,”
Real-Time Systems, vol. 30, no. 1, pp. 55–81, May 2005. [Online].
Available: https://doi.org/10.1007/s11241-005-0504-z

Paul Agbaje is a Ph.D. student in the Computer Sci-
ence and Engineering Department at The University
of Texas at Arlington. He obtained his bachelor’s
degree in Electrical and Electronics Engineering
from the University of Ilorin, Nigeria. His current re-
search focuses on interoperability issues in internet-
of-vehicles and cyber-physical system security.

Habeeb Olufowobi received his Ph.D. in computer
science from Howard University in 2019. He joined
the University of Texas at Arlington as an Assistant
Professor of Computer Science and Engineering in
2020. His research focuses on embedded systems
security and privacy challenges in emerging network
technologies for connected autonomous vehicles, the
Internet of Vehicles (IoV) in a smart city ecosystem,
and vehicular cloud network.

Sena Hounsinou received her Ph.D. in electrical
and computer engineering from Southern Illinois
University Carbondale in 2018. She joined Metro
State University as Assistant Professor in 2023.
Her research interest is in computer architecture,
cyber-physical systems, real-time systems, and re-
configurable computing.

Gedare Bloom (SM’19) received his Ph.D. in com-
puter science from The George Washington Univer-
sity in 2013. He is Associate Professor at the Uni-
versity of Colorado Colorado Springs in Computer
Science, which he joined in 2019. He was Assistant
Professor of Computer Science at Howard University
from 2015-2019. His research expertise is computer
system security with emphasis on real-time embed-
ded systems. He is an associate editor for the IEEE
TRANSACTIONS ON VEHICULAR TECHNOLOGY.

