
1

Reverse Engineering Controller Area Network
Messages using Unsupervised Machine

Learning
Uchenna Ezeobi, Habeeb Olufowobi, Clinton Young, Joseph Zambreno, Gedare Bloom

Abstract—The smart city landscape is rife with op-
portunities for mobility and economic optimization,
but also presents many security concerns spanning
the range of components and systems in the smart
ecosystem. One key enabler for this ecosystem is
smart transportation and transit, which is foun-
dationally built upon connected vehicles. Ensuring
vehicular security, while necessary to guarantee pas-
senger and pedestrian safety, is itself challenging due
to the broad attack surfaces of modern automotive
systems. A single car contains dozens to hundreds
of small embedded computing devices known as
electronic control units (ECUs) executing 100s of
millions of lines of code; the inherent complexity of
this tightly-integrated cyber-physical system (CPS)
is one of the key problems that frustrate effective
security. We describe an approach to help reduce
the complexity of security analyses by leveraging
unsupervised machine learning to learn clusters of
messages passed between ECUs that correlate with
changes in the CPS state of a vehicle as it moves
throughout the world. Our approach can help to
improve the security of vehicles in a smart city,
and can leverage smart city infrastructure to further
enrich and refine the quality of the machine learning
output.

I. INTRODUCTION

The notion of smart city includes smart trans-
portation and the management of the infrastructure
that supports its operations. Connected vehicles are
important technologies supporting these services.
The security issues around the use of connected
vehicles in smart city ecosystems are becoming
increasingly prominent due to the rising complexity
of vehicles as a complex, integrated cyber-physical
system (CPS) [1]. A CPS is described by the inter-
communication between the computational devices
and their physical environment. A modern vehicle is

a CPS consisting of hundreds of electronic control
units (ECUs) to improve the efficiency of the ve-
hicles in terms of safety, automation, and comfort.
These ECUs also stand between the vehicle controls
and the outside world, including other connected
vehicles and smart city infrastructure as depicted in
Figure 1. The communication among these ECUs
is facilitated by the in-vehicle network to achieve
personalized vehicle configuration and enhanced
connectivity. However, these connectivities expose
the vehicular systems to several emergent vulnera-
bilities, cyber threats, and physical compromise. An
essential design consideration of the smart city is to
account for the security of the computational com-
ponents of the CPS vehicles within their broader
ecosystem as depicted in Figure 2.

The adoption of the controller area network
(CAN) bus for communication between the ECUs
has led to the complexity of network attacks on
connected vehicles. Researchers have demonstrated
different attack surfaces that can be used to com-
promise vehicle operations remotely in modern
vehicles due in large part to the integration with
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Fig. 1: In-vehicle security impacts the integrated
smart city ecosystem.
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CAN bus [2]. A plethora of approaches have been
proposed for securing the CAN bus, which lacks
security by design [3], [4]. The CAN bus has a
standardized message transmission and operation,
but the implementation varies for different manu-
facturers and vehicle models, make, or even trim.
A de facto standard way to describe a specific
implementation is with a CAN database file known
as DBC (after its extension, .dbc). The DBC con-
tains the translation for all CAN messages in a
particular vehicle, and it is typically held secret by
manufacturers and varies by implementation.

Algorithmic vulnerability analysis and attack de-
tection, e.g., with supervised machine learning,
requires the analysis of raw CAN messages by
manually inspecting high volumes of data to re-
verse engineer message syntax and semantics to
reconstruct the vehicle operations and contextualize
the messages. Although network traffic analysis and
packet recognition exists for enterprise networks
and Internet protocols, the prior work in this area
are inapplicable to the automotive network due to
differences in the CAN protocol. Most important
is that CAN messages do not include source nor
destination addresses nor port numbers. Enterprise
networks also have a clear separation between net-
work and application layers which is not the case
with CAN, which only uses the physical and link
layers of the traditional stack.

Our goal, therefore, is to facilitate analyzing and
reverse engineering the relationship between CAN
messages and vehicular functions without extensive
manual testing on a physical vehicle and without
the use of a DBC file. To achieve this goal, we
use an approach that focuses on reverse engineering
and classifying messages transmitted in the CAN
bus with minimal domain expertise. The reverse
engineering process is required by researchers to
appropriately map vehicular functionalities to their
respective messages and understand the impact on
the vehicular operation when altered. The typi-
cal approach to reverse engineer CAN data is to
inject captured messages into the vehicle to see
how it responds. This requires a physical vehi-
cle in a controlled (lab) environment to be done
safely. Our insight is those high-level descriptions
of captured CAN data may provide coarse-grained
labels on time intervals that relate them to vehicle
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Fig. 2: CPS in a Smart City Ecosystem.

operations. Key here is that some mapping must
exist between time and operations, for example, at
time x the vehicle turns left. In a smart city we
envision this mapping could be facilitated through
the vehicle-infrastructure communications, or even
by infrastructure monitoring (cameras and other
sensors) alone. The classification of messages is
accomplished by leveraging unsupervised machine
learning using clustering methods as the primary
method to classify messages and their contents.

In a smart city ecosystem, the mapping of the
message allows the correlation of the CPS state
to the physical events—higher-level understanding
of events to the lower-level functions—that are
facilitated by the smart city infrastructure. The
proposed reverse engineering approach can be used
to characterize traffic by vehicle types, conjecture
how events are generated, and facilitate the link
between cyber communications and physical behav-
ior of the externally visible changes in connected
vehicles, such as the actions of a left turn, right
turn, and break with their corresponding sequences
of internal CAN messages.

The contributions of this paper are as follows:
• An approach to reverse engineer CAN using

unsupervised learning
• Comparison of 4 clustering algorithms to cor-

rectly classify real CAN data.

II. BACKGROUND AND RELATED WORK

The CAN bus is a serial communication protocol
that consists of a set of nodes called ECUs. These
ECUs are interconnected by a broadcast channel
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Fig. 3: Base CAN data frame format.

to transmit messages related to their functions.
Vehicles utilize CAN as a serial communication
protocol. The adoption of CAN reduces network
complexity and wiring costs by simplifying me-
chanical connections or point-to-point wiring. Mes-
sages sent on the bus are broadcast to all the nodes
communicating on the network. CAN implements
the carrier sense multiple access protocol with col-
lision detection and arbitration on message priority
(CSMA/CD+AMP) originally developed for use in
automotive applications.The CAN data frame con-
sists of an ID field, data field, Cyclic Redundancy
Check (CRC), and other fields seen in Fig. 3 [5].

Research in the reverse engineering and transla-
tion of CAN messages is an active area. READ [6]
is a novel algorithm that isolates counters and
CRCs among other values to label signal types
based on data frames in CAN traces. ACTT [7]
leverages diagnostic information to parse CAN by
breaking messages into tokens and then learning
the translation from bits to vehicle function. Li-
breCAN [8] captures the bit-flip rate of messages
and uses them along with sensor data from a
smartphone to classify messages. CAN-D [9] ex-
tracts hidden signals (endianness and signedness) in
CAN data using a four-step pipeline with machine
learning, optimization, and heuristics to identify
and correctly translate signals in CAN data to
their numerical time series. The prior work focuses
mainly on decoding the data frame by identifying
the signal boundaries and correlating their changes
with vehicle functions by monitoring them with
a controlled vehicle. Our approach differs by ab-
stracting the signals encoded in the data frames
and instead focusing on the relationship between
sets of frames in time to identify which messages
correspond to the vehicle functions in a manner that
does not require any special equipment and can be
done without controlled vehicle experimentation or
substantial automotive expertise.

III. CLUSTER-BASED REVERSE ENGINEERING

Raw CAN is unlabeled and requires proprietary
information from the manufacturer to reverse engi-
neer. Our approach to reverse engineer the relation-
ship between CAN messages and vehicle functions
with low domain expertise relies on unsupervised
machine learning—clustering—to identify related
groups of messages. Clustering machine learning
techniques assume that instances of a particular
class have data profiles that cluster into centroids.
Each new data point can then be classified accord-
ing to its distance from that centroid.

At a high level, our reverse engineering process
involves reading CAN data, calculating the dis-
tances between all CAN IDs, merging nearest IDs
together to form clusters, and using these clusters
to classify unknown CAN IDs. The merging of
clusters and termination of clustering depends on
the specific clustering algorithm approach. When
clustering completes, our hypothesis is that the
merged clusters group the different CAN messages
together by their respective functions.

We use the Euclidean distance metric by mapping
each message to a point in the x-y plane based
on its timestamp. The CAN ID and data field
are extracted from CAN data frames to use as
features, in addition to the receive timestamp. This
information is available in all CAN log formats
and are standard to all vehicles regardless of their
manufacturer, make, or model. For all messages we
set the x value to the origin, so the distance function
reduces to the L1 norm of |y1−y2|, the timestamps
of messages m1 and m2 respectively.

We generate a distance matrix for clustering by
calculating the distance between the last transmis-
sions of each ID. We smooth the distances by
applying the arithmetic mean over the distances
calculated in the final 100 transmissions of a cap-
tured CAN log. The distance matrix then shows the
distance between each ID based on the averaged
distance between their last few transmissions. This
matrix is used as input to the clustering approaches.
We use and compare the following 4 clustering
algorithms for our approach to reverse engineering.

Agglomerative Hierarchical (AH) Clustering is
based on k-means clustering. It ensures that two
nearby points are placed in the same cluster. In our
approach, this means that each CAN ID is assigned
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as a single cluster and as we iterate through the
IDs and their respective distance measurements,
then CAN ID clusters are merged starting with the
nearest neighbor. The advantage of this approach is
that if certain CAN IDs have a known function, the
functions of unknown CAN IDs can be determined
by their clustering.

Genetic Algorithm (GA) Clustering uses ran-
domized adaptive search heuristics that imitate the
biological process of natural selection. Any GA
starts with a set of randomly generated states of
chromosomes known as the population. A fitness
function that influences the next generation of states
is calculated by measuring the quality of the clus-
tering for each state. In our case, each state is a
distance metric of a particular CAN ID from all
other CAN IDs. We use a variant of the GA that
requires the user to specify the number of clusters
manually.

Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) defines a cluster as a maxi-
mal set of density-connected points. The algorithm
requires two parameters: maximum radius of the
neighborhood (Eps) and the minimum number of
points in the Eps neighborhood of a point (MinPts).
We varied Eps from 0 − 1 with an increment of
0.05 and MinPts from 1 − 10 with an increment
of 1 to find a good parameter to cluster CAN IDs.
We chose DBSCAN because it helps to discover
structures in data that are difficult to observe.

Expectation Maximization Clustering with Gaus-
sian Mixture Models (EM-GMM) is a type of soft
clustering algorithm in which clusters may overlap.
It starts by assuming that all the data points are
Gaussian distributed. Each cluster then corresponds
to a probability distribution, and EM-GMM tries to
discover their parameters (mean and covariance).
Although this algorithm requires prior knowledge
of the number of clusters, we chose to use it
because it can help to investigate if a particular
CAN ID belongs with multiple vehicular functions.

IV. EVALUATION

We implemented the 4 clustering approaches in
Python with the numpy and scipy libraries, and
with the PyClustering tool [10]. We evaluate our
approach using 2 CAN data sets: simulated CAN
data and real J1939.

Fig. 4: Distance matrix for Simulated CAN Data.

A. Simulated CAN Data

We conducted a feasibility study using a simu-
lated CAN data log with 10 different CAN IDs,
simulating an acceleration mode and a braking
mode. This data log had messages with different
frequencies and message intervals to simulate real
data. There were 5 IDs specifically related to accel-
eration and another 4 IDs related to braking, with
1 message that was transmitted during both modes.
This data was used to verify and validate our hy-
pothesis that clustering can be effective. Given that
raw CAN data is dependent on the vehicle it was
captured from, our simulated data gives us a base-
line to understand the workings of our algorithms
when applied towards raw captured CAN data.
Simulated data was generated using Vector CANoe
and has complete information about the relationship
between messages and vehicle functions.

Figure 4 shows the distance matrix for this data.
We passed this matrix into the AH clustering al-
gorithm as well as a dendrogram creator. A den-
drogram visualizes hierarchical clustering in a tree-
like structure that records the sequences of merges
of the leaves, in this case the CAN messages. The
dendrogram (Fig. 5) is created from the leaves first
to create the cluster tree. It shows that there are
two clusters of the CAN IDs, which is expected
since we simulated two separate driving modes of
braking and accelerating. Our clustering algorithm
confirmed the dendrogram results. CAN IDs 1-5
and 8 were designated as accelerating and were
clustered into one group, and CAN IDs 6, 7, 9,
and 10 were designated as braking and clustered
into another group. The simulated data was used
to confirm our hypothesis and approach before
applying clustering to real CAN data.
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Fig. 5: Dendrogram for Simulated CAN Data. The
two major groupings for the CAN IDs are easily
distinguished visually.

B. Real J1939 Data

To address the chicken-and-egg problem of in-
complete information about the ground truth that
our clustering algorithms are trying to discover, we
obtained CAN data that followed the J1939 stan-
dard to examine the performance of our approach.
The Society of Automotive Engineers standard SAE
J1939 is the vehicle bus standard based on CAN
that has been widely adopted by diesel engine man-
ufacturers for use in large tractors and trucks [11].
This standard defines that all J1939 packets, except
for the request packet, should contain eight bytes
of data and a standard header which contains a
Parameter Group Number (PGN), that is embedded
in the message’s 29-bit identifier. A PGN identifies
a message’s function and associated data. J1939
attempts to define standard PGNs to encompass a
wide range of automotive and other vehicle pur-
poses. PGNs define the message functions so we
validate the clustering algorithm results by using
the standard as a basis for ground truth.

The J1939 data set was captured from a John
Deere tractor as it performed tillage operations at
different sites. This data set is raw, has no labels,
and contains over 300 CAN IDs. We created the
distance matrix for this data and passed it to the 4
clustering algorithms.

To measure the performance of the clustering
algorithms, we manually generated sets of related
PGNs to define the IDs that belong to similar
vehicular functions. We filtered out some PGNs that
are not well-defined and omit them from calculation
of performance. Performance is calculated by com-
paring the manually labeled ground truth and each
algorithm’s generated clusters using the Fowlkes-

TABLE I: Cluster FM-Scores with J1939 Data.

Clustering Algorithm FM-Score
Agglomerative Hierarchical (AH) 71.72%
Genetic Algorithm (GA) 41.03%
DBSCAN 54.90%
EM-GMM 71.82%

Fig. 6: PCA of AH Clustering

Mallows score (FM-Score) [12]. FM-Score is an
extrinsic clustering evaluation metric that evalu-
ates the similarities between two clusters, i.e., the
ground truth and each algorithm’s output. Table I
summarizes the results of the FM-Scores for each
of the four clustering approaches we investigated.

The AH and EM-GMM algorithms performed
the best, and we focus further on them to un-
derstand the benefits of clustering. With this data,
which is much richer, the dendrogram is less use-
ful, so we visualized the high-dimensional clusters
using principal component analysis (PCA) to help
guide our parameter tuning. An example of the case
using AH clustering is shown in Fig. 6. The AH
algorithm returned four clusters (0-3) as shown in
Table II. The largest cluster contained all the driving
critical functions, such as braking and engine con-
troller. The other three clusters were much smaller
and contained proprietary IDs, memory accesses,
and data transfer IDs in separate clusters. The
results confirm that related CAN messages are clus-
tered together by unsupervised learning algorithms.
Given that J1939 CAN data has known functions,
we were able to confirm that CAN IDs with related
functions cluster together.

V. CONCLUSION

In this paper, we have motivated the need for
vehicle security in smart cities and evaluate how
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TABLE II: AH Clusters found in J1939 data.

Cluster Label CAN Function
0 Driving (Engine and Brake)
1 Proprietary
2 Memory Access
3 Data Transfer

well unsupervised learning may characterize the
externally visible actions of vehicles with messages
transmitted in the CAN bus. The experimental
results show that unsupervised clustering methods
are able to classify, identify, and label specific CAN
IDs by their respective functions. These methods
only require timestamped CAN logs—they do not
require insider knowledge or previously reverse-
engineered data. Our approach applies to all ve-
hicles but we could only validate the algorithm
on J1939 CAN protocol because the DBC for
other vehicles was not accessible. We could easily
integrate this approach to any vehicle that utilizes
CAN related protocols. Such low-effort capabilities,
combined with the data-rich smart city ecosystem,
may lead to greater understanding of how to secure
connected vehicles in the future.
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