
FedCime: An Efficient Federated Learning
Approach For Clients in Mobile Edge Computing

Anonymous Submission

Abstract—Federated learning (FL) is a privacy-enhancing dis-
tributed machine learning technique that allows multiple devices
with localized data to train a global model collaboratively. How-
ever, in Mobile Edge Computing (MEC) environments, resource-
constrained devices generate non-independent and identically
distributed (non-IID) data, which traditional FL algorithms such
as Federated Averaging (FedAvg) struggle to handle, resulting in
accuracy degradation of the global model. In addition, dynamic
mobile networks present challenges such as intermittent or
poor network connectivity, dropouts, and high migration rates,
making it difficult for mobile clients to communicate model
updates to the central server. Moreover, our observations reveal
that networks with high migration rates have degraded model
performances. To address these challenges, we present FedCime,
a novel tier-based FL approach that selects mobile clients with
high utility likely to complete training and replaces migrating
clients during the round of training. Our evaluation shows that
FedCime significantly improves training performance in terms of
accuracy and computational efficiency compared to state-of-the-
art FL algorithms. Moreover, FedCime leverages client migration
to improve the accuracy of the global model by up to 3.24% with
a 30% migration rate and is scalable to handle large numbers
of clients in dense networks, making it suitable for practical
applications.

Index Terms—Federated learning, machine learning, mobile
edge computing, data heterogeneity

I. INTRODUCTION

With the proliferation of sensors and their increasing con-
nectivity to the Internet, many Internet of Things (IoT) de-
vices have emerged as important sources of data for machine
learning (ML) applications. These sensors gather data from
the environment and send them to the cloud to train different
machine learning algorithms or use trained algorithms for
inferencing. As the number of IoT devices and the data pro-
duced continues to increase, data privacy, integration, security,
and latency are key challenges affecting the efficiency of ML
applications. Federated Learning (FL) is a privacy-preserving
ML training technique that addresses these challenges by
allowing distributed clients to cooperatively train machine
learning models on decentralized data spread across multiple
edge devices. Furthermore, since clients can train with their
local data, FL reduces latency issues that may arise when
clients try to access a central cloud server for data. Fig. 1
illustrates the basic architecture of FL. In FL, clients iteratively
download the global model weights from the cloud, locally
train their models, and upload the new weights to the server.
The cloud server aggregates the clients’ updates to improve the
model and shares the global model weights with all the clients
for the next round of training. This process can continue until
training converges [1].

A

Federator

Local Training Local Training Local Training

Global Model

Local ModelLocal Model Local Model

Model
Aggregation

G
lo

ba
l W

ei
gh

ts Global Weights

Lo
ca

l U
pd

ate
s

Lo
ca

l U
pd

at
es

Local Updates

Fig. 1: Overview of federated learning with different devices

One major challenge of FL is that data across clients
may differ in class distribution, quality, and quantity. With
non independently and identically distributed (non-IID) and
unbalanced data in FL settings, training accuracy can become
degraded [2]. In addition, FL training may face challenges
due to dynamic device availability and traffic from millions of
devices for any training round. Thus, sampling clients that will
improve training performance and model accuracy for each
training round becomes necessary. However, communication
between the selected clients with a single central server can
still lead to a communication bottleneck that slows the training
process. To address this challenge, edge servers in Mobile
Edge Computing (MEC) bring computational power closer to
devices in mobile environments and assist in a hierarchical
setting to coordinate clients in their vicinity, reducing traffic
load to core cloud networks and minimizing the latency of
end-to-end communication between clients and servers [3].
Furthermore, MEC environments typically have low-latency,
high-bandwidth connections to edge devices, which can be
important for real-time and interactive applications like self-
driving cars. Since vehicles are equipped with various sensors
that generate large amounts of data, MEC servers can allow
vehicles to participate in FL training, thus expanding the
capabilities of FL and making it more suitable for real-
world applications. Although MEC servers can assist in FL
aggregation, the dynamic nature of the network due to clients’
mobility still poses the challenge of maintaining a consistent
set of devices for any training round, thereby affecting the
overall performance of the FL model. The challenges become
even more complicated when the federator does not have
information about each client’s location to estimate the dropout
rate due to migration out of its coverage area.

1

Despite these challenges, the privacy-preserving advantage
of FL makes it an essential tool for supporting machine
learning applications for mobile nodes. Thus, it is necessary
to address the challenges of data heterogeneity and client
mobility in mobile networks and ensure that FL can support
mobile applications efficiently.

Limitations of existing approaches. Several studies have
attempted to address the issue of data heterogeneity in client
devices by distributing common data to all clients during the
training process to increase the level of IID data during the
training process. An approach proposed by Zhao et al. [4]
involves sharing a small dataset between all edge devices
participating in the training. However, some clients may be
unwilling to download public data due to trustworthiness
and privacy concerns. Another approach, used by Yoshida et
al. [5], allows incentivized clients to upload a portion of their
data to the federator to improve the global accuracy of this
shared data. However, the approach may pose privacy risks for
clients participating in the process, especially in the presence
of attackers. Other techniques, such FedProx and Yogi [6],
[7], focus on optimizing the model aggregation process to
improve the global model’s accuracy. For example, FedProx
penalizes clients that drift from the global model to ensure
that accuracy is not degrading. While these techniques offer
different degrees of efficiency in addressing data heterogeneity
in FL, they do not account for problems that can arise in
mobile environments.

These approaches are unsuitable for mobile nodes that
frequently migrate from the coverage area of the federator
aggregating the weights uploaded by each client at every
training round. One way to address this challenge is to actively
select clients more likely to remain throughout the training
process. This approach can help in minimizing the dropout
rates during FL training. However, existing methods, such as
those proposed by Zhang et al. [8] that consider only data
distribution to reduce the impact of dropout and select clients
with a lower degree of non-IID data during training do not
address the issue of device mobility.

To address the mobility challenge, solutions are required
that can mitigate the effect of nodes moving out of the
federator’s coverage area before training is completed.

Our contribution. We propose FedCime to address the
mobility challenge in federated learning. FedCime actively
selects clients likely to remain within the federator’s coverage
area during the majority of training. The selection strategy
is based on the client’s delay metrics, where we assess the
delays of each client’s transmission when sending updates for
aggregation. Using this metric, we group clients into different
tiers and prioritize clients in tiers with lower delays for the
next round of training. Also, to mitigate any dropout that
might occur, we choose some 𝑁 additional clients for training.
Furthermore, to address the issue of data heterogeneity, we pri-
oritize model updates with similar characteristics by analyzing
updates from reserve clients selected based on their aggregated
weights. Specifically, we calculate the cosine similarity of the
aggregated weights between the reserved and new clients and

select new clients with similar distance values to improve the
model’s performance.

Overall, FedCime is an effective solution for addressing
the challenges of mobility and data heterogeneity in federated
learning, particularly in highly dynamic networks like vehicu-
lar networks. By actively selecting clients with a lower proba-
bility of migration and prioritizing those with similar updates
based on a distance-based similarity technique, FedCime can
minimize the dropout effect of migration and reduce the
impact of data heterogeneity on accuracy. Hence, FedCime is
a useful and efficient technique supporting FL for mobile
network machine learning applications.

To evaluate the performance of FedCime, we implemented
the proposed approach using Pytorch and PySyft and tested it
on two real-world FL datasets: MNIST and FashionMNIST.
In addition, we compared our approach with FedAvg and
FedProx, commonly used baselines in prior work. We also
compared our approach with oversampling technique, a naive
approach that can improve the global model due to client
dropout. Our extensive evaluation demonstrates that Fed-
Cime is capable of improving the accuracy of FL models while
mitigating the effects of migration and data heterogeneity in
mobile networks. Compared to the baselines and oversampling
technique, FedCime achieves higher accuracy and lower loss
rates, indicating its superiority in addressing the challenges
of mobile network machine learning applications. Our results
demonstrate the effectiveness of FedCime as a solution for
improving FL in mobile networks.

II. BACKGROUND AND MOTIVATION

In this section, we present details of FL and highlight some
of its challenges in practical settings using real-world datasets.
We also describe the motivation for this work.

A. Federated Learning
In centralized ML, data from different IoT devices are

uploaded to a central server, and model training is done using
this data repository. However, this approach can lead to data
leakages that may compromise users’ privacy [9]. FL is a
decentralized ML architecture that addresses this challenge
by allowing multiple mobile devices to train a shared model
without sharing raw data, i.e., FL allows a model’s training
among a set of clients 𝐶 = {𝐶1, 𝐶2, 𝐶3, ..., 𝐶𝑘}. The model
training process occurs on the device, with only the updated
model parameters being transmitted back to the central server.
This training is completed after 𝑇 consecutive rounds, and each
client trains with its own local dataset, 𝐷𝑘 , enabling efficient
and privacy-preserving collaborative learning while minimiz-
ing the impact on device performance and user privacy. For
local training across all clients, the goal is to optimize the
loss function 𝐹 (𝑤) in a distributed way, which measures
the difference between the model’s predictions and the true
values. Thus, each client 𝐶𝑘 solves the following distributed
optimization problem:

min
𝑤𝑘 (𝑡)

1
|𝐷𝑘 |

|𝐷𝑘 |∑︁
𝑖=1

𝑓𝑘 (𝑤𝑘 (𝑡), 𝑥𝑖 , 𝑦𝑖),∀𝑥𝑖 , 𝑦𝑖 ∈ 𝐷𝑘 (1)

2

where 𝑤𝑘 (𝑡) is the model weight from client 𝑘 , 𝑥𝑖 represents
the input examples in 𝐷𝑘 , 𝑦𝑖 denotes the corresponding labels,
and 𝑓 is any suitable local loss function, such as mean-squared
error (MSE). In FL, a centralized server known as the federator
receives local weights from clients after each round for aggre-
gation. The federator can choose from available aggregation
algorithms to optimize training efficiency. For instance, in
FedSGD [10], the federator receives gradients of the loss
function after each epoch and performs a gradient descent
using the average gradient from all clients. Alternatively, in
FedAvg [10], each client runs multiple epochs before sending
an update to the federator, thereby reducing the number of
communication rounds needed for training and improving
aggregation efficiency. In FedAvg, clients compute new sets
of weights and send these to the federator, which averages
the weights from each client using a defined aggregation rule,
such as simple averaging or weighted averaging. The resulting
weighted average of the model weights becomes the new
global model, which is then used as the starting point for the
next round of training. FedAvg averages the weights of local
models from multiple clients to improve the accuracy and gen-
eralization of the global model while protecting client privacy.
When weighted average is used, FedAvg gives more weight to
better-performing models, leading to improved global model
performance. The weighted average of the local model weights
from multiple clients is computed as follows:

𝑤(𝑡) :=
𝐾∑︁
𝑘=1

𝐷𝑘

𝐷
𝑤𝑘 (𝑡) (2)

𝑤(𝑡) is the new global model, 𝐷 is the datasets from all
clients participating in training, and 𝐾 is the total number of
clients. Here, FedAvg assigns weights to local models based
on the number of samples used for training by each client.
This weighting scheme gives more importance to clients with
more data.

B. Heterogeneity in FL

Heterogeneity in FL can arise due to differences in hardware
specifications, network connectivity, data distribution, or the
learning objective. This is a significant challenge that can
affect the quality and efficiency of the learning process.
Additionally, in networked systems such as the Internet of
Vehicles, clients involved in FL can have heterogeneous and
non-IID datasets due to variations in the data captured by
different vehicles at different times and locations. In non-IID
scenarios, where the divergence in clients’ datasets is extreme,
the size or type of data can also be unequal. This heterogeneity
can lead to the degradation of the global model accuracy and
slower convergence. Therefore, appropriate techniques must
be used to mitigate these challenges and improve the overall
performance of the FL training process.

C. Mobility Challenge in MEC

Mobility presents a significant challenge in MEC as mobile
devices move from one location to another, changing their

Fig. 2: Traffic flow changes. The traffic volume in 840
continuous 15-minute intervals for 3 locations in Northern
Virginia/Washington D.C. capital region [11]
connectivity status, network conditions, and resource avail-
ability. In mobile edge networks, participating clients in FL
may not be available for the whole duration of training. This is
further complicated by the fact that the number of vehicles in a
particular region may not stay the same for an extended period
of time, as shown in Fig. 2, using a Traffic Flow Prediction
Dataset [11]. This inconsistency in the number of vehicles
can result in clients moving out of the coverage area of the
federator, and thus, may upload low-quality models back for
aggregation or even completely drop out of the training [12].
Therefore, the mobility challenge in FL requires the federator
to use techniques that limit the number of clients that drop out
due to migration during training while mitigating the effect of
dropout on the model’s performance.

D. Motivation

Our approach is motivated by the potential negative impact
of data heterogeneity and client mobility on the performance
of the global model in FL. To assess this impact, we perform
experiments with varying numbers of clients using both IID
and non-IID data, as well as in different network scenarios,
and analyze their effect on the training accuracy.

1) Impact of mobility: In our experiments, we investigate
the impact of client migration on the performance of the
global model in FL. We show two scenarios in Fig. 3: one
where clients migrate out of the federator’s coverage area
without replacement and another where they are replaced by
other clients. The results reveal that client migration without
replacement leads to a decrease in accuracy and convergence,
while replacing the clients results in better convergence but
with some oscillation due to the non-IID nature of the data. As
the migration rate increases, the model’s accuracy decreases
when using the FedAvg algorithm. These findings highlight the
need for techniques that limit the effect of client migration and
non-IID data on the global model’s accuracy and convergence
in FL.

2) Impact of data heterogeneity: We conducted experi-
ments to assess the impact of heterogeneous data on the
training performance of 200 clients using both IID and non-
IID MNIST datasets, varying the number of clients and

3

(a) Impact of clients migration without replacement (b) Impact of clients migration with replacement

Fig. 3: (a) Accuracy of the global model with different migration rates without replacement using Non-IID data (b) Accuracy
of the global with different migration rates with replacement using Non-IID data

(a) Impact of heterogeneous data and available number of clients (b) Naive solution using oversampling

Fig. 4: (a) Impact of Non-IID data and the number of clients on the accuracy of the global model (b) Impact of the naive
solution with 40% migration rate with and without replacement.

evaluating the performance over 200 training rounds. The
results presented in Fig. 4(a) demonstrate that using non-IID
data leads to poorer accuracy over the 200 training rounds
compared to when clients use uniformly distributed IID data.
Moreover, the results show that having fewer clients available
for training also degrades the accuracy of the global model.
Therefore, high migration rates can significantly impact the
model’s accuracy. Since FedAvg does not address the effect
of data heterogeneity among clients, the model’s accuracy
decreases when clients with non-IID data participate in the
training process. Additionally, the accuracy decreases with
FedAvg when the number of participating clients reduces.

3) Naive approach: To minimize the negative impact of
dropout on the model’s accuracy, we adopt a strategy of
sampling additional clients for training and randomly selecting
weight updates from them during aggregation. Our experiment
involves allowing 40% clients to migrate during training.
In the event that 𝑁 clients drop out, we sample 𝑁 weight
updates from the additional clients randomly pre-selected by
the federator. We then compare the performance of the naive
approach with that of clients that migrate with and without
replacement. Fig. 4(b) demonstrates that over 200 rounds, the

naive approach significantly mitigates the effect of migration.
Furthermore, this result highlights that using techniques that
limit migration’s impact can improve the overall performance
of FL. Therefore, our proposed approach, FedCime, aims to
enable training to proceed seamlessly in each round despite
node migration.

This paper explores the challenges of training an FL model
in a mobile network of diverse clients, such as vehicular
networks, where sensors are heterogeneous, and data quality
may be degraded. In contrast to the extreme cases studied
in Fig. 3 and Fig. 4, we assume that some clients have IID
data and others have non-IID data, which varies in quality
depending on the age and resource constraints of the sensors.
To simulate this scenario, we evaluate the accuracy of the
model using different dropout rates and 30% of clients with
non-IID data, where we intentionally degrade their data quality
by adding Gaussian noise. Our experiment (Fig. 5) shows
that as clients drop out, the federator can replace them with
new clients entering the network with high-quality data, thus
improving the model instead of degrading it. This observation
motivates our approach to search for clients that can improve
the model’s accuracy as the migration rate increases.

4

Fig. 5: Accuracy with 30% non-IID data. As the migration rate
increases from 0.1 to 0.3, the accuracy of the global model
drops.

4) Challenges: Our motivating examples have shown that
incorporating additional clients for training and using their
updates can reduce the impact of migration in mobile environ-
ments. However, this method does not address two significant
challenges: the limitation of the number of dropouts during
training and the reduction of the effect of data heterogeneity
on the global model. The following section introduces a novel
technique called FedCime, which guarantees a reduction in the
number of dropouts and the mitigation of the non-IID effect.
Using the naive oversampling approach helps to alleviate the
impact of migration. However, FedCime goes beyond this
approach by prioritizing clients with similar performance to
the remaining clients and those with high utility, thereby
improving the model’s performance even further, as shown
in Fig. 6.

III. FEDCIME DESIGN DETAILS

This section discusses the essential aspects of FedCime.
Firstly, we explore how FedCime leverages its online pro-
filing technique to limit the selection of likely migrating
clients. Subsequently, we discuss the methodology used by
the federator to compute the similarity between the model
updates of various clients and choose the most suitable one for
aggregation. Finally, we examine how the offloading process
impacts the model aggregation.

In our proposed FL architecture, all clients can communicate
with the federator, but we consider the scenario where clients
are mobile and can be located at different places at any given
time, which may affect their connectivity to the federator. As
a result, a client’s poor connectivity and limited computational
power can lead to the straggler effect since it cannot efficiently
communicate its update to the federator. Additionally, if a
mobile node migrates out of the network, it will no longer be
able to communicate with either the federator or other nodes.

A. Client Selection

In our approach, we assume the existence of a federator
that can be connected to a base station, which selects a subset
of clients for training, similar to traditional FL settings. The

FedCime

Oversampling

Performance with migration

Optimal Performance

1. Prioritize reserved clients with close

performance with existing clients

2. Prioritize clients with high utility

Migration Rate

A
cc

ur
ac

y

Fig. 6: Performance of FedCime with migration. With in-
creasing migration, accuracy degrades using traditional FL
approaches. Using the naive oversampling technique helps
to improve training performance when the migration rate
increases. With FedCime, the federator improves accuracy
by prioritizing clients with high utility and selecting reserved
clients with performances similar to those that did not migrate.federator monitors the time it sends the global model to all
clients and the time each client returns their local update.
To identify stragglers and migrating clients, the federator
calculates the mean computation duration of results obtained
after profiling, then drops clients with high response time. We
assume that clients farther away from the federator will take
longer to send updates. We express the delay metric of each
client as follows:

𝑇𝑘 = 𝑇
𝑢
𝑘 − 𝑇

𝑑
𝑘 (3)

where 𝑇𝑑
𝑘

is the time when client 𝐶𝑘 starts downloading the
global model from the federator, and 𝑇𝑢

𝑘
is the time the

federator receives an update from client 𝐶𝑘 .
After obtaining the delay metrics from each client, the

federator divides clients into 𝑛 tiers using the following
equation:

𝑇𝑖𝑒𝑟𝑘 =

⌈ 𝑇𝑘

𝑇𝑚𝑎𝑥
× 𝑁𝑡𝑖𝑒𝑟𝑠

⌉
(4)

where 𝑇𝑚𝑎𝑥 is the maximum delay among all clients, and
𝑁𝑡𝑖𝑒𝑟𝑠 is a predetermined number used by the federator to
determine the number of allowed tiers. Eq. 4 groups clients
based on their delay metrics and assign clients with high
delays to the highest tier. The federator can then use this
information to retain clients in lower tiers and replace clients
in tier 𝑁 in the next round of training. We summarize this
procedure in Algorithm 1. In line 1, the federator initializes
the maximum delay for the current training round. Lines 2-7
show the calculation of the delay metric for each of the clients
selected for training. In lines 8-11, the federator groups each
client into different tiers using the delay metric and adds each
client to its appropriate tier. The federator selects clients for
the next round of training and returns the set of selected clients
in lines 12-16.

5

Algorithm 1 Client Selection using Delay Metrics
Require: S: subset of clients selected for training, 𝑁𝑡𝑖𝑒𝑟𝑠 : number

of tiers
1: 𝑇𝑚𝑎𝑥 ← 0 {initialize maximum delay}
2: for 𝑆𝑘 ∈ S do
3: 𝑇𝑘 ← 𝑇𝑢

𝑘
− 𝑇𝑑

𝑘
{calculate delay metric for client 𝑆𝑘}

4: if 𝑇𝑘 > 𝑇𝑚𝑎𝑥 then
5: 𝑇𝑚𝑎𝑥 ← 𝑇𝑘 {update maximum delay}
6: end if
7: end for
8: for 𝑆𝑘 ∈ S do
9: 𝑇𝑖𝑒𝑟𝑘 ← ⌈ 𝑇𝑘

𝑇𝑚𝑎𝑥
× 𝑁𝑡𝑖𝑒𝑟𝑠⌉ {assign client 𝑆𝑘 to tier}

10: T𝑇𝑖𝑒𝑟𝑘 ← T𝑇𝑖𝑒𝑟𝑘 ∪ 𝑆𝑘 {add client 𝑆𝑘 to tier}
11: end for
12: S ← ∅ {initialize selected subset}
13: for 𝑖 = 1 to 𝑁𝑡𝑖𝑒𝑟𝑠 − 1 do
14: S ← S ∪ RandomSelect(T 𝑖) {select clients from tier 𝑖}
15: end for
16: return S {return selected subset of clients}

B. Improved Client Selection and Dropout Mitigation

Although the tier-based method limits the number of migrat-
ing clients that will be chosen over the total training rounds,
we assume that some clients will still migrate or drop out due
to other factors, such as slow computation speed. To mitigate
the dropout effect, we allow the federator to oversample by
choosing 𝐾 clients that are more than the actual number
of clients that will be used for aggregation. From this set
of clients, the federator will choose 𝛼𝐾 clients for training
and keep the remaining (1 − 𝛼)𝐾 as reserve clients. Here,
𝛼 is the proportion of clients selected for aggregation and
0 < 𝛼 ≤ 1. If any client drops out, the federator will replace
such clients from the reserve clients based on the similarity of
their updates.

Similarity Scores: After receiving updates from 𝛼𝐾 se-
lected clients, the federator aggregates their weights. If there
is any dropout, the federator checks the updates of the reserved
clients and calculates their similarities to the 𝛼𝐾 clients that
did not migrate. We use cosine similarity, commonly used
in literature for calculating similarities in machine learning
applications, as the measure of similarity [13], [14]. The cosine
similarity for each client is calculated using the following:

𝑆𝑘 =
⟨Δ𝜃𝑐𝑘 ,Δ𝜃𝑐𝑎 ⟩
∥Δ𝜃𝑐𝑘 ∥∥Δ𝜃𝑐𝑎 ∥

(5)

where ⟨Δ𝜃𝑐𝑘 ,Δ𝜃𝑐𝑎 ⟩ gives the dot product between the model
update Δ𝜃𝑐𝑘 from client 𝑘 and the aggregated weights Δ𝜃𝑐𝑎

from the selected 𝛼𝐾 clients. ∥Δ𝜃𝑐𝑘 ∥∥Δ𝜃𝑐𝑎 ∥ is the product of
the norms of the updates.

Similarity Weights: Although the reserve clients are now
weighted such that the clients with updates that are similar to
the originally sampled 𝛼𝐾 clients can be selected, it is also
important to use updates that will be significant to the global
model. Since a client’s loss will be high if the model is not
adequately generalized to its dataset, we use each client’s loss
as a metric to determine the weights given to its similarity

scores. The similarity weight for each client can be calculated
using the following:

𝛾𝑘 = 1 − 𝜏

𝑒𝐿𝑜𝑠𝑠
2
𝑘

(6)

where 𝐿𝑜𝑠𝑠𝑘 is the loss from client 𝑘 and 𝜏 is a scaling factor.
Using the 𝛾𝑘 calculated for each client, the federator

updates the similarity score using:

𝑆𝑘 := 𝛾𝑘𝑆𝑘 (7)

After calculating the similarity, the federator sorts the re-
serve clients in non-increasing order of their similarity scores,
i.e., 𝐶′ = {𝑆′1, 𝑆

′

2, ...𝑆
′
𝑛}, where 𝑆

′

1 ≥ 𝑆
′

2 ≥ ... ≥ 𝑆
′
𝑛 and

𝑛 = (1− 𝛼)𝐾 . The federator then chooses the first few clients
from 𝐶′ needed to replace the dropped clients from the initial
set of selected 𝛼𝐾 clients.

Model Aggregation: Using the model updates received
from all selected clients, the federator aggregates the updates
to compute the new weight for the global model using Eq. 2.

A summary of the approach is given in Algorithm 2. In
lines 1-6, the federator initializes the number of dropped
clients to zero, selects clients for training, and calculates the
number of expected updates. After all selected clients send
their updates, the federator checks if there is any dropout,
aggregates the weights, and calculates the similarity scores
for reserved clients in lines 7-17. In line 18, the federator
sorts the reserve clients based on their similarity scores and
replaces the dropped clients in lines 19-20. Line 22 shows the
global weight update after replacement.

IV. EVALUATION

We perform simulation experiments with one federator and
𝐾 clients to evaluate our proposed approach. We test the
performance of FedCime using two commonly used datasets
and compare it with FedAvg, FedProx, and the oversampling
technique. Our implementation follows the classic FL archi-
tecture with one server and 200 clients. To simulate degraded
data in wireless sensors, we add Gaussian noise 𝑥 = 𝑥 + 𝜖 ,
where 𝜖 ∼ N(𝜇, 𝜎2), 𝜇 = 0, and 0 < 𝜎2 ≤ 1. We assume that
the federator can communicate with all clients, and the delay
incurred in downloading and uploading models increases with
the distance of the client from the federator.

A. Evaluation Settings

1) Datasets: We used two publicly available datasets,
MNIST and FashionMNIST, widely used in literature [8], [14].

MNIST: The MNIST dataset consists of 10 classes of hand-
writing images ranging from 0 to 9. This dataset comprises
60,000 training and 10,000 testing images, all grayscale, and
with dimensions of 28 x 28 pixels. We divide the image dataset
among 300 clients and use the original test set for evaluating
the model.

FashionMNIST: The FashionMNIST dataset comprises
70,000 grayscale images divided into 60,000 training and
10,000 testing sets. We distribute the training set among 300
clients and evaluate the global model using the testing set.

6

Algorithm 2 Improved Client Selection Algorithm
Require: 𝑀: number of local epochs; 𝐾: number of clients to be

oversampled; 𝛼: proportion of clients selected for aggregation;
𝜏: scaling factor for similarity weight.

Ensure: Global model 𝜃.
1: Initialization:
2: 𝐷𝑙 ← 0 {initialize the number of dropped clients}
3: C ← random sample of 𝐾 clients {oversample clients for train-

ing}
4: S ← random subset of 𝛼𝐾 clients from C {select subset of

clients for training}
5: R ← remaining clients in C {reserve clients for replacement}
6: 𝐴𝑙 ← |S| {number of expected updates}
7: if clients dropped out then
8: 𝐷𝑙 ← |𝐴𝑙 | − |S| {update number of dropped clients}
9: for 𝑘 ∈ S do

10: Δ𝜃𝑐𝑎 ← weighted aggregation of updates from S
11: end for
12: for 𝑘 ∈ R do
13: Δ𝜃𝑐𝑘 ← local update from 𝑘 with 𝑀 epochs

14: 𝑆𝑘 ←
⟨Δ𝜃

𝑐𝑘
,Δ𝜃𝑐𝑎 ⟩

∥Δ𝜃
𝑐𝑘
∥ ∥Δ𝜃𝑐𝑎 ∥ {calculate similarity score}

15: 𝛾𝑘 ← 1 − 𝜏

𝑒
𝐿𝑜𝑠𝑠2

𝑘

{calculate similarity weight}

16: 𝑆𝑘 ← 𝛾𝑘𝑆𝑘 {update similarity score}
17: end for
18: C′ ← sort R in non-increasing order of similarity scores

{sort reserve clients by similarity score}
19: for 𝑖 ∈ [1, 𝐷𝑙] do
20: S ← S∪C′𝑖 {replace dropped clients with reserve clients}
21: end for
22: 𝜃 ← update global model with aggregate of update in 𝐶
23: end if

2) Model Parameters: Similar to Talukder and Islam [15],
we used a logistic regression classifier for our experiments
targeting sensors in mobile networks using Pytorch and Pysyft
rather than TensorFlow. To preprocess the data, we flattened
the input features and encoded the labels using one-hot en-
coding. We utilized the softmax activation function for the
MNIST and FashionMNIST datasets and set the L1 and L2
regularization values to 0.01. We chose the Adam optimizer
for an efficient optimization process and the categorical cross-
entropy loss function to measure the dissimilarity between
the predicted probability distribution and the true probability
distribution of the classes.

3) Baselines: We evaluate the performance of FedCime us-
ing the following baselines:

FedAvg [10]: FedAvg is a commonly used FL algorithm
that aggregates updates from all clients that did not drop out
but participated in the round of training. The weight of each
client’s update in the final global model is determined by their
respective local dataset size.

FedProx [6]: FedProx is an improved version of the Fe-
dAvg algorithm that addresses the issue of data heterogeneity
among clients. FedProx incorporates a proximal term in the
optimization objective of FedAvg to minimize the divergence
of local models from the global model. The proximal term

TABLE I: Accuracy of FL algorithms under different migra-
tion rates. In each round, 50% of clients have non-IID data.

Datasets Algoirthms Migration Rates

10% 20% 30%

MNIST FedAvg 75.51 76.59 77.72
FedProx 75.75 76.51 76.84

Oversampling 76.02 75.69 77.74
FedCime 76.64 78.37 80.08

FashionMNIST FedAvg 64.76 64.84 65.11
FedProx 64.59 64.79 64.88

Oversampling 64.95 64.89 65.13
FedCime 64.99 66.01 66.83

acts as a penalty for updates that deviate excessively from the
global model and reduces the influence of such updates in
the aggregation process. As a result, the FedProx algorithm
generates a more stable and accurate global model.

Oversampling: This approach involves oversampling the
clients using our naive approach. The oversampling approach
allows the federator to replace clients that dropout with an-
other client from the oversampled set. This technique aims to
address the impact of dropout resulting from node migration.

B. Evaluation Results

1) Comparison with baselines: We evaluate the perfor-
mance of FedCime against the baselines. The result of our
evaluation is given in Table I. We varied the migration rate
from 10% to 30% in each round, with 50% of clients having
IID and non-IID data each.

For the MNIST dataset, the best performance of the FedAvg
algorithm is 77.72%. FedProx handles the heterogeneity in the
dataset better than FedAvg when the migration rate is 10%,
achieving an accuracy of 75.75%. Using the oversampling
approach, the accuracy is improved to 77.74% when the
migration rate is 30%. The results show that FedCime achieves
higher accuracy of 76.64%, 78.37%, and 80.08% for 10%,
20%, and 30% migration rates, respectively, outperforming
all other baselines. The accuracy increases with increasing
migration when available IID clients join the network, but
FedCime leverages this advantage more effectively than other
algorithms.

Since the FashionMNIST dataset is more complex than
MNIST, the accuracy is lower compared to MNIST for all
algorithms. However, FedCime algorithm outperforms the
baselines, improving the accuracy by up to 1.95% in the best
case. The oversampling approach improves the performance of
both FedAvg and FedProx, reaching an accuracy of 65.13%
compared to FedAvg’s 65.11% and FedProx’s 64.88% accu-
racy when the migration rate is 30%. However, the ability
of FedCime to select clients that significantly improve the
model’s performance helps it to perform better than other
algorithms. By using FedCime, we improve the accuracy of
the models to 64.99%, 66.01%, and 66.83% for 10%, 20%,
and 30% migration rates, respectively.

2) Convergence analysis: Convergence analysis is an im-
portant aspect of evaluating the performance of machine

7

(a) 0.1% migration rate (b) 0.2% migration rate (c) 0.3% migration rate

Fig. 7: Performance of FedCime with MNIST dataset using different rates of migration and 0.5% Non-IID

(a) 0.1% migration rate (b) 0.2% migration rate (c) 0.3% migration rate

Fig. 8: Performance of FedCime with FashionMNIST dataset using different rates of migration and 0.5% Non-IID

learning algorithms, including FL. It measures the rate and
stability of algorithm convergence as it iteratively updates the
model weights based on the training data. We evaluate the
convergence of FedCime with existing approaches as shown
in Fig. 7 and Fig. 8. The figures show the accuracy of each
technique for 10%, 20%, and 30% migration rates. Using the
MNIST dataset, Fig. 7 illustrates that all algorithms converge
smoothly for a migration rate of 10%. However, FedCime con-
verges with higher accuracy compared with other baselines.
As the degree of migration increases, FedCime performs
better compared to other baseline algorithms, as evident in
Fig. 7(b) and Fig. 7(c), where FedCime selects better clients
and converge with higher accuracy.

The convergence for the FashionMNIST dataset is a bit
noisier due to its higher complexity than the MNIST dataset,
but all algorithms were able to converge as depicted in Fig. 8.
However, in most cases, FedCime converges with higher accu-
racy than the baselines, improving the model’s performance.

3) Computation cost analysis: In addition to evaluating the
accuracy of FedCime, we perform a computational analysis,
i.e., we evaluate the time and resource required and compare
the overhead with FedAvg’s weights aggregation time. The
weights aggregation time is the duration it takes for the server
to find the weighted average of all weights uploaded by the
clients after completing local training. We compare this time to
the time required to complete the procedures in Algorithm 2.

We use three datasets for our evaluation: FEMNIST, MNIST,
and CIFAR-10. FEMNIST is a non-IID and heterogeneous
dataset comprising 341,873 training sets divided among 3,383
users. It contains 40,832 grayscale test images of sizes 28 x
28 pixels. CIFAR-10 is a dataset of 60,000 colored images
of size 32 x 32 pixels, consisting of 10 classes, including
50,000 training images and 10,000 testing images. We used
logistic regression for the FEMNIST and MNIST datasets,
while for the CIFAR-10 dataset, we used a one-block VGG
network [16].

Fig. 9(a) shows the result of our evaluation. From the
results, FedCime’s overhead is comparable to the aggregation
time when using logistic regression. Due to the number of
parameters in the VGG network when using the CIFAR-10
dataset, the time for FedCime’s computation is higher than
the aggregation time. Comparing the overhead of FedCime’s
computation with the overall training and weight aggregation
time for all clients in the network, Fig. 9(b) shows that
the overhead of FedCime’s computation is negligible for all
datasets and networks. Therefore, the demonstrated overhead
of FedCime’s computation in Fig. 9(a) becomes insignificant
in the context of the overall aggregation time.

4) Is FedCime scalable?: In this experiment, we evaluate
FedCime across different scales of clients with the MNIST
datasets, terminating the training after 150 rounds. We choose
𝐾 clients and randomly divide the training set among the 𝐾

8

(a) FedCime’s computation and FedAvg’s aggregation time (b) FedCime’s computation and FedAvg’s overall training time

Fig. 9: (a) Comparison of FedCime’s computation time and FedAvg’s time for aggregation on the server side (b) Comparison
of FedCime’s computation time and FedAvg’s overall time for training and aggregation on the client and server side.

Fig. 10: Accuracy with different numbers of clients in the
network

Fig. 11: FedCime’s improvement despite clients’ migration

clients, where we test 100 ≤ 𝐾 ≤ 1000. Fig. 10 shows that
FedCime outperforms other algorithms with a small number
of clients, and it continues to perform well as the number
of clients increases. Furthermore, our algorithm improves
the accuracy of the global model more than FedProx does,
as FedProx converges slowly. We can also use FedCime in
combination with FedProx to enhance its performance, as we
have accomplished with FedAvg.

5) How good is FedCime at replacing migrating clients?:
To demonstrate the effect of client migration on FedCime,
we track the number of migrating clients and calculate its
accuracy. We compare the accuracy of FedAvg and FedCime’s
in each training round. Fig. 11 shows the results of our evalua-
tion. As depicted, FedCime can leverage migration better than
the traditional FedAvg algorithm and improve the performance
of the global model. In the extreme scenarios where many
clients migrate, FedCime is capable of selecting clients that
will enhance the model’s accuracy rather than diminish it. This
result implies that our algorithm can enhance traditional FL
techniques and ensure that clients in mobile environments can
participate effectively in FL training.

V. RELATED WORK

This section summarizes some of the state-of-the-art ap-
proaches related to the proposed method.

FL is a privacy-preserving ML approach that uses the
FedAvg algorithm to allow global averaging on a server after
completing local stochastic gradient descent on a subset of
devices [10]. While FedAvg has been shown to converge
under realistic settings, data heterogeneity can slow down the
convergence rate [17]. Techniques such as sharing common
data [4] and FedProx [6] have also been proposed to address
this challenge. However, sharing common data may violate
clients’ security policies, while the FedProx requires parameter
tuning that may lead to slow convergence. Other optimization
techniques, such as Yogi, FedNova, Scaffold, CSFedAvg [7],
[8], [18], [19] have also been proposed, but they do not fully
account for migration in MEC environments.

Split learning (SL) enables clients in FL training to offload
some layers of their ML models to maximize efficiency.
Tharpa et al. [20] introduced SplitFed, a technique combining
SL and FL to reduce computation and improve model robust-
ness. However, it does not address the challenge of device
mobility, which can impact training accuracy when devices
move out of the network before training is completed. Wu
et al. [21] proposed FedAdapt, an adaptive framework that
accounts for dynamic network bandwidth and heterogeneous

9

devices during training. The approach uses a reinforcement
learning agent to make offloading decisions. Cox et al. [22]
proposed Aergia, a technique that boosts training speed in
FL by allowing slow clients to freeze part of their models
and transfer the frozen layers to a faster client for training.
However, these techniques are unsuitable for mobile devices
due to the challenge of device mobility.

Edge networks involving mobile devices have unstable
connectivity and network conditions, and the clients presented
in the server’s coverage area may vary during training. There-
fore, creating a framework that ensures the training process
is completed successfully to maintain a stable model, even
when nodes move out of the network, is essential. However,
research in this area is limited. To address this issue, Ullah
et al. [23] proposed FedFly, which reduces the training costs
when devices migrate between edge servers during the training
phase by transferring the model to the source edge server. We
aim to enhance the accuracy and stability of the model trained
by the initiating edge server in this context.

VI. CONCLUSION

In this paper, we present FedCime, an efficient and effective
tier-based approach for FL in MEC environments to minimize
the effect of non-IID and heterogeneous datasets while en-
suring better convergence and accuracy. FedCime leverages
client migration in mobile networks to select clients that can
improve the accuracy of the global model. We have shown that
FedCime is resilient to client migrations and can efficiently
select clients likely to remain in the training process for ex-
tended periods and will improve the model’s accuracy, thereby
ensuring that clients in mobile environments can participate
effectively in the training process. Our extensive evaluation of
FedCime with different datasets shows that FedCime outper-
forms state-of-the-art algorithms such as FedAvg and FedProx
in terms of accuracy, communication overhead, and computa-
tional efficiency. We also showed through experiments that
FedCime is scalable and can handle a large number of clients
in dense networks, making it suitable for practical applications.

We plan to test FedCime with more heterogeneous datasets
using extreme non-IID cases in future work. We also envision
expanding FedCime to choose trustworthy clients and detect
and defend against malicious clients in the network, thereby
contributing significantly to the development of FL in MEC
environments.

REFERENCES

[1] H. Ludwig and N. Baracaldo, “Introduction to federated learning,” in
Federated Learning. Springer, 2022, pp. 1–23.

[2] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” Foundations and
Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[3] R. Yu and P. Li, “Toward resource-efficient federated learning in mobile
edge computing,” IEEE Network, vol. 35, no. 1, pp. 148–155, 2021.

[4] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[5] N. Yoshida, T. Nishio, M. Morikura, K. Yamamoto, and R. Yonetani,
“Hybrid-fl for wireless networks: Cooperative learning mechanism using
non-iid data,” in ICC 2020-2020 IEEE International Conference On
Communications (ICC). IEEE, 2020, pp. 1–7.

[6] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” Proceedings of
Machine Learning and Systems, vol. 2, pp. 429–450, 2020.

[7] S. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečnỳ,
S. Kumar, and H. B. McMahan, “Adaptive federated optimization,” arXiv
preprint arXiv:2003.00295, 2020.

[8] W. Zhang, X. Wang, P. Zhou, W. Wu, and X. Zhang, “Client selection for
federated learning with non-iid data in mobile edge computing,” IEEE
Access, vol. 9, pp. 24 462–24 474, 2021.

[9] F. Tramèr, R. Shokri, A. S. Joaquin, H. Le, M. Jagielski, S. Hong, and
N. Carlini, “Truth serum: Poisoning machine learning models to reveal
their secrets,” arXiv preprint arXiv:2204.00032, 2022.

[10] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017.

[11] L. Zhao, O. Gkountouna, and D. Pfoser, “Spatial auto-regressive depen-
dency interpretable learning based on spatial topological constraints,”
ACM Transactions on Spatial Algorithms and Systems (TSAS), vol. 5,
no. 3, pp. 1–28, 2019.

[12] J. Kang, Z. Xiong, D. Niyato, Y. Zou, Y. Zhang, and M. Guizani,
“Reliable federated learning for mobile networks,” IEEE Wireless Com-
munications, vol. 27, no. 2, pp. 72–80, 2020.

[13] S. Sohangir and D. Wang, “Improved sqrt-cosine similarity measure-
ment,” Journal of Big Data, vol. 4, no. 1, pp. 1–13, 2017.

[14] P. Tian, W. Liao, W. Yu, and E. Blasch, “Wscc: A weight-similarity-
based client clustering approach for non-iid federated learning,” IEEE
Internet of Things Journal, vol. 9, no. 20, pp. 20 243–20 256, 2022.

[15] Z. Talukder and M. A. Islam, “Computationally efficient auto-weighted
aggregation for heterogeneous federated learning,” in 2022 IEEE Inter-
national Conference on Edge Computing and Communications (EDGE).
IEEE, 2022, pp. 12–22.

[16] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[17] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of fedavg on non-iid data,” arXiv preprint arXiv:1907.02189, 2019.

[18] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “Tackling the ob-
jective inconsistency problem in heterogeneous federated optimization,”
Advances in neural information processing systems, vol. 33, 2020.

[19] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T.
Suresh, “Scaffold: Stochastic controlled averaging for federated learn-
ing,” in International Conference on Machine Learning. PMLR, 2020.

[20] C. Thapa, P. C. M. Arachchige, S. Camtepe, and L. Sun, “Splitfed:
When federated learning meets split learning,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 36, no. 8, 2022.

[21] D. Wu, R. Ullah, P. Harvey, P. Kilpatrick, I. Spence, and B. Varghese,
“Fedadapt: Adaptive offloading for iot devices in federated learning,”
IEEE Internet of Things Journal, 2022.

[22] B. Cox, L. Y. Chen, and J. Decouchant, “Aergia: leveraging heterogene-
ity in federated learning systems,” in Proceedings of the 23rd conference
on 23rd ACM/IFIP International Middleware Conference, 2022.

[23] R. Ullah, D. Wu, P. Harvey, P. Kilpatrick, I. Spence, and B. Varghese,
“Fedfly: Toward migration in edge-based distributed federated learning,”
IEEE Communications Magazine, vol. 60, no. 11, pp. 42–48, 2022.

10

