
Work-in-Progress: Real-Time Modeling for Intrusion
Detection in Automotive Controller Area Network

Habeeb Olufowobi, Gedare Bloom
Electrical Engineering and Computer Science

Howard University
Email: {habeeb.olufowobi, gedare.bloom}@howard.edu

Clinton Young, Joseph Zambreno
Electrical and Computer Engineering

Iowa State University
Email: {cwyoung, zambreno}@iastate.edu

Abstract—Security of vehicular networks has often been an
afterthought since they are designed traditionally to be a closed
system. An attack could lead to catastrophic effect which may
include loss of human life or severe injury to the driver and
passengers of the vehicle. In this paper, we propose a novel
algorithm to extract the real-time model of the controller area
network (CAN) and develop a specification-based intrusion de-
tection system (IDS) using anomaly-based supervised learning
with the real-time model as input. We evaluate IDS performance
with real CAN logs collected from a sedan car.

I. INTRODUCTION

Vehicles may contain over 100 embedded control systems,
or electronic control units (ECUs), interconnected through
the in-vehicle network that facilitates their communications.
ECUs perform distinct operations and function individually as
a node on the vehicle network. Common networks include the
controller area network (CAN), local interconnect network,
and FlexRay. Specifically, our focus is on CAN which is the
most commonly used bus system as the automotive network.
In CAN topology, each ECU is connected to the same channel
for communication through protocols specific to CAN bus, and
messages are broadcast to the entire network.

The lack of inherent security features such as message
encryption and authentication have paved the way for ad-
versaries to exploit the vehicular network [1]–[3]. Observing
messages sent through the network can reveal information that
an adversary can use to subvert and infiltrate the vehicle oper-
ations. Limitations in the computational, memory, and power
resources of ECUs has been a hindrance to implementing com-
plex security mechanisms. Hence, an important requirement in
implementing security mechanisms for vehicular networks is
a lightweight and computationally efficient algorithm.

In this paper, we propose a specification-based intrusion
detection system (IDS) using a real-time model of CAN. In
this approach, the intended behaviors of CAN are analyzed and
modeled using schedulability analysis derived from a message
trace. We propose an algorithm that can effectively reconstruct
the timing model of the messages based on the trace. This
algorithm uses response time analysis to characterize bus
operations, formulates the timing properties, and develops
a specification of the normal activities that can be used to
identify violations. We validate our approach with real CAN
data.

II. BACKGROUND AND SYSTEM MODEL

In this section, we introduce notation and describe the
timing model of the CAN bus. Tindell et al. [4], [5] and Davis
et al. [6] present a real-time model and worst case response
time analysis of the CAN derived from fixed priority response
time analysis of CPU scheduling. We adopt their terminology
and rely on some of their key results in developing our
specification-based approach. For readers familiar with real
time schedulability, the key difference between task scheduling
and CAN message scheduling is the use of messages in place
of tasks, and each release of the message is a message instance
rather than a job. Note that the CAN bus is formulated as
a non-preemptive, fixed priority scheduler that may support
periodic, sporadic, and aperiodic messages; we currently limit
our analysis to periodic messages.

CAN consists of a set of nodes called ECUs interconnected
by a broadcast channel. CAN Messages can be transmitted
periodically, sporadically, or aperiodically, but in our current
analysis we restrict to periodic messages. Each message has
a data of up to 8 bytes specified by the data length code
(DLC) that determines the messages transmission time. CAN
efficiently implements static fixed priority non-preemptive
scheduling of messages. The CAN protocol includes collision
detection and avoidance, error detection, signaling, and fault
confinement.

Scheduling decisions occur through bus arbitration. Each
transmitting message goes through the arbitration process to
determine which wins the bus. When a message wins arbi-
tration and starts transmission, it becomes non-preemptable.
Messages win arbitration according to their priority, which is
determined by the message identifier (ID). A message with a
lower ID has higher priority.

CAN bus is susceptible to faults due to electromagnetic
interference (EMI). EMI errors can be modeled as a random
single bit fault in CAN bus. A fault can lead to overhead in
the error frame and cause retransmission. CAN implements an
efficient error handling mechanism in which an error detected
in the bus is signaled to the sending node [4], [7]. The
receiving nodes will discard the received erroneous message,
and the sending node retransmits the message. When an error
is detected, the recovery process transmits up to 31 bits in the
worst case in addition to the retransmission of the message.



A. CAN System Model and Response Time Analysis

Our notation is summarized in Table I. M denotes an
ordered set of periodic messages, and Mi ∈ M is a message
with ID i in the set. Mi,k denotes the kth instance of Mi,
which has completion time Ti,k. If Mi is periodic, the time
from 0 until the occurrence of the first instance i.e., Mi,1, is
the message phase, denoted by φi. A message may also have a
deadline, however we assume a constrained, implicit deadline
(equal to the period). Thus, Mi can be characterized by a 3
tuple (φi, Ci, Pi), representing the message phase, the message
worst-case execution time, and the period respectively.

Davis et al. [6] determine a message worst-case response
time (WCRT) by taking the maximum response time over the
instances of the message in a busy period,

Ri = max
q∈[0,Qi−1]

(Ri(q)) (1)

where Qi is the number of instances of message Mi that
become ready for transmission before the end of the busy
period and Ri(q) is the WCRT of instance q.

Ri(q) = Ji + wi(q)− qPi + Ci (2)

Qi =

⌈
ti + Ji
Pi

⌉
(3)

where Ji, the queuing jitter of the frame, corresponds to the
maximum time variation between the release of a message
instance and queuing the message for transmission; wi, the
queuing delay under faults, corresponds to the maximum time
a message can remain queued before successfully transmitting;
and ti is the length of the priority level-i busy period.
ti is found by solving the following recurrence relation with

a starting value of t0i = Ci and ending when tn+1
i = tni :

tn+1
i = Bi + Ei(t

n
i ) +

∑
k≤i

⌈
tni + Jk
Pk

⌉
Ck (4)

where, Bi, the blocking time, is the longest time that any
lower priority message can occupy the bus while message Mi

is queued and is given by

Bi = max
k>i

(Ck) (5)

and Ei(ti) is the worst case overhead caused by the error
recovery mechanism that can occur for a given time interval,

Ei(ti) =
(

31τbit + max
k≥i

(Ck)
)
F (t) (6)

where there can be 31 overhead bits for error signaling, and
τbit is transmission time of a single bit (determined by the bus
speed). F (t) yields the maximum number of errors on the bus
for a time interval t and must be a monotonic non-decreasing
function. According to Broster et al. [8], the expected number
of errors for the fault model in an aggressive environment is
30 faults per seconds.

The worst case queuing delay wi given an error model
to account for random errors on the bus is determined by

TABLE I: Table of Notations

Variable Definition
M set of messages M = (M1,M2, . . . ,Mn)

Mi ∈M the ith message
Ci transmission time
Pi message period
P̃i estimated period
Ri worst case response time
Ji the queuing jitter
wi the queuing delay
Bi the blocking time

fi,min lower bound on completion time relative to release
fi,max upper bound on completion time relative to release
Mi,k the kth instance of message mi

φi phase of Mi

Ti,k completion time of Mi,k (CAN message time stamp)
τbit the transmission time of a single bit
Ei the error overhead

calculating the delay for each of the Qi instances by solving
the following recurrence relation:

wn+1
i (q) = Bi+E(wn

i +Ci)+qCi+
∑
k<i

⌈
wn

i + Jk + τbit
Pk

⌉
Ck

(7)
with starting value w0

i (q) = Bi + qCi and terminating when
wn+1

i (q) = wn
i (q).

We define a step function F (t) for our analysis as

F (t) = idu · t− δte+ e (8)

where δt represents the control of the shift in time from left
to right, e controls the change in the total number of faults up
and down, u constrains the height of the error, and i controls
the length in the time interval.

III. CAN TIMING MODEL RECONSTRUCTION AND
ANOMALY DETECTION

The exact timing model parameters, especially precise mes-
sage periods, are difficult to obtain—they are not normally
disclosed by manufacturers. Thus, we reconstruct the real-time
model parameters of the periodic messages by observing the
message behavior on the CAN. Algorithm 1 infers bounds at
which the period of each message could occur by reconstruct-
ing the steps the message will go through before transmission.
These bounds are derived using the analysis described in
Section II applied to information available globally on the
CAN. The algorithm extracts a bounded period estimate,
fi,min, fi,max, and the transmission time Ci.

Algorithm 1 takes as input a CAN log and message ID i. It
returns the estimate P̃i of the period by iteratively calculating
upper and lower bounds on the release and inter-arrival times
of successive message instances. The release time of the
first message instance of a given message cannot be inferred
directly, because the system state prior to the start of the
log is unknown; indeed, the release of the first instance may
occur prior to the start of the log. Thus, the first instance
of each message is ignored. In line 4, the algorithm scans
backward to find the timestamp of the previous message with
lower priority or the time the bus is in an idle state. We
are uncertain of the release time of Mi,k, which may have



Algorithm 1 Estimate the period and release jitter of a
message Mi given a Log and ID i.

1: function DERIVEPERIODICPARAMETERS(Log, i)
2: fi,min, fi,max ← 0,∞
3: for Mi,k ∈ Log, k ≥ 1 do
4: Tl,m ← FindPreviousTimestamp()
5: Lcur ← Tl,m − Cl,m

6: Hcur ← Ti,k − Ci,k

7: if k > 2 then
8: ∆L ← Lcur −Hpast

9: ∆H ← Hcur − Lpast

10: if ∆L > fi,min and ∆H < fi,max then
11: fi,min, fi,max ← ∆L,∆H

12: Lpast, Hpast ← Lcur, Hcur

13: P̃i = fi,min

14: Ji = fi,max − fi,min

15: return (P̃i, Ji)

occurred at any point between the first message with lower
priority that could have blocked it or an idle bus, and until
the end of the intervening messages of higher priority that
may have interfered with transmission. Thus, the algorithm
pessimistically selects the earliest and latest possible release
times of the current message, denoted Lcur and Hcur.

To construct a bounds on the period, the algorithm subtracts
the latest and earliest release of the previous instance of the
same message from the earliest and latest release of the current
instance, respectively, to obtain ∆L and ∆H . These ∆ values
represent the smallest and largest possible inter-arrival time
between the previous and current instance of the message.
fi,min and fi,max update when ∆L and ∆H are closer.

The final value of fi,min is taken as the estimated period
P̃i, which, assuming a constant actual period and non-negative
release jitter, is no greater than the actual period. The release
jitter is the difference between fi,max and fi,min, which
describes the maximum error in the estimated P̃i because the
actual period is no greater than fi,max.

We obtain the response time of each message using equation
1 with the estimated P̃i and Ji determined by Algorithm 1. We
use this response time in a supervised learning algorithm to
classify messages as normal or anomalous. Algorithm 2 takes
as input a message instance, the estimated period, response
time, and the message phase. Note that the phase φi estimate
is Ti minus Ci of the first instance. Algorithm 2 calculates
the minimum timestamp that a message instance can assume
by adding the phase to the instance multiplied by the period.
The maximum timestamp represents the minimum timestamp
plus the WCRT. The algorithm classifies the message instance
as normal if its actual timestamp falls between the calculated
minimum and the maximum timestamps.

A. Example

Consider the schedule in Figure 1, composed of messages
M1(0, 0.27, 0.675), M2(0, 0.27, 0.945), and M3(0, 0.27, 1.89)
with M1 having the highest priority (of 1) and M3 having the
least priority (of 3), and with time in milliseconds. The busy

Algorithm 2 Anomaly detection from timing specification.

1: function DETECT(Mi,k, P̃i, Ri, φi)
2: mints ← φi + (P̃i ∗ k)
3: maxts ← mints +Ri

4: if mints ≤ Ti,k ≤ maxts then
5: return 0 ← normal
6: else
7: return 1 ← anomalous

period starts at time t=0 with the release of all the first message
instances, M1,1,M2,1,M3,1, and M1,1 wins arbitration. Thus,
M1,1 causes interference for both M2,1 and M3,1. At t=0.675,
M1 releases instance M1,2 while M3,1 is in transmission,
which therefore blocks M1,2 until M3,1 finishes transmission.
The bus is idle from t=1.62 to 1.89. The embedded table shows
the corresponding log for these messages with sample data,
DLC, and completion time Ti,k.

To better understand how the fi,min and fi,max are cal-
culated, consider M1 and then M1. The first instance M1,1

is ignored. For M1,2, scanning backward finds that the pre-
ceding message is of lower priority, which implies that the
release of this message occurs during or immediately after
the transmission of M3,1. Therefore, a lower bound on the
release time is given by subtracting the transmission time
from the timestamp of the preceding message, i.e., Lcur =
T3,1 − C3,1 = 0.81 − 0.27 = 0.54. The upper bound is
always calculated directly from the message instance, e.g.,
Hcur = T1,2 − C1,2 = 1.08 − 0.27 = 0.81. The range
from [(T3,1 − C3,1), (T1,2 − C1,2)] = [0.54, 0.81] describes
the maximal time interval that M1,2 could have spent waiting
for transmission. As expected, M1,2’s actual release time
0.675 ∈ [0.54, 0.81]. Because the first instance does not
calculate an upper and lower bound, the second instance is not
able to calculate a valid ∆L or ∆H , so the algorithm stops
processing this instance, stores the calculated Lcur and Hcur

as Lpast and Hpast, and moves on to M1,3. Scanning backward
from M1,3 find the previous message M2,2 has lower priority,
so Lcur = T2,2−C2,2 = 1.35−0.27 = 1.08. Again, the upper
bound is calculated as Hcur = T1,3 − C1,3 = 1.62 − 0.27 =
1.35. Now ∆L = Lcur − Hpast = 1.08 − 0.81 = 0.27
and ∆H = Hcur − Lpast = 1.35 − 0.54 = 0.81. These
calculated bounds are used as the first estimates for the period,
so f1,min = 0.27 and f1,max = 0.81 after processing M1,3.
The actual period of M1 = 0.675 ∈ [0.27, 0.81]. For M1,4

the algorithm calculates ∆L = 1.89 − 1.35 = 0.54 and
∆H = 2.16−1.08 = 1.08. Although the new ∆L improves on
f1,min, the new ∆H is worse than the f1,max so the bounds
are not updated. As the log ends with no more instance of M1,
its estimated period and jitter are P̃1 = 0.27 and J1 = 0.81.

IV. PRELIMINARY RESULTS AND ANALYSIS

We illustrate and evaluate our model using a message set
logged through the OBD-II port of a real sedan vehicle while
driving on a dynamometer. Initial test data was recorded for
the vehicle state comprising of ignition key turn (handbrake
on), acceleration, maintaining a constant speed, braking, and



Mi,k DLC Data Ti,k
M1,1 8 FF FE 7E F0 86 0B 30 00 0.27
M2,1 8 6F 9F 6F 94 0F A0 EE 0B 0.54
M3,1 8 01 F4 02 4D 04 18 82 B6 0.81
M1,2 8 FF FE 7E F0 86 0B 30 00 1.08
M2,2 8 6F 9F 6F 94 0F A0 EE 0B 1.35
M1,3 8 FF FE 7E F0 86 0B 30 00 1.62
M2,3 8 6F 9F 6F 94 0F A0 EE 0B 2.16
M1,4 8 FF FE 7E F0 86 0B 30 00 2.43
M3,2 8 01 F4 02 4D 04 18 82 B6 2.70

Fig. 1: Example of periodic message behavior. (Time in ms.)

reverse. We performed attacks by injecting malicious messages
at high frequency to override normal vehicle operations. These
malicious messages were constructed by spoofing legitimate
messages transmitting on the bus. We identified message IDs
such as wheel speed and backup light while observing the
recorded normal data to construct the attack. Messages are
injected at different intervals through the OBD-II port for
about 60 seconds at a frequency higher than the observed to
cause a malfunction in the vehicle.

The test vehicle has a medium speed and high speed CAN
bus, and our analysis currently focuses only on the medium
speed bus. Through manual analysis, we deduced that most
signals on this bus are periodic. We conduct two different
experiments. First, we recorded data for five different standard
vehicle operations, i.e., normal data, for about 220 seconds
each. Two of these datasets are used to train the model by
applying algorithm 1. We use the other three datasets to test the
model by invoking Algorithm 2 for every message instance. A
message instance is classified as anomalous if 1.) The message
ID was not recorded during training, or 2.) Algorithm 2 returns
anomalous. Table II shows the performance of our approach
measured by calculating the classifier accuracy of Algorithm 2
over at most 60 second time windows of the three test datasets.
The message column indicates the total number of message
instances present in each window. We observe a high false
positive rate due to lines 2 and 3 of Algorithm 2. When a
message is labeled anomalous, the IDS does not increment its
counter for k, which, for a false positive, creates a scenario
where the k gets stuck and we get a sequence of false positives
until the end of the test window. We found that in each window
there are only a few root cause false positives when a message
instance transmits about a hundredth of a millisecond after the
maximum predicted interval. In future work we will explore
how to mitigate these trains of false positives.

We validate our detection method on a single attack dataset
involving the vehicle backup light. We performed a signal
injection attack that injects the message to activate the backup

TABLE II: Outcome of classification algorithm

Messages TN FP Accuracy
85101 84549 552 99.3514
105674 104885 789 99.2534
105664 104815 849 99.1965
66909 66096 813 98.7849
105495 104954 541 99.4872
71974 71503 472 99.3442
105496 104969 527 99.5005
105666 104925 741 99.2987
105665 104846 819 99.2249

light every 700 microseconds. The injections are made in
intervals of length 15 seconds, with 15 seconds of non-
injected messages in between. Thus, the attack data contains a
mix of normal and attack message instances during injection
intervals [15, 30] and [45, 60] seconds, and normal message
instances outside those intervals. The attack log contains
106,877 message instances, with 3,365 of them labeled anoma-
lous. Although we know that we injected 2,845 messages, we
are not certain which logged messages are from our injection
and which are from the vehicle’s normal operations. Thus, we
cannot calculate metrics of classifier performance, but we can
say that we did not observe any anomalous labels for message
instances of the injected message ID outside of the injection
intervals, so we have confidence that the injected messages
are, mostly, correctly labelled anomalous.

V. CONCLUSION AND FUTURE WORK

In this paper, we described a specification-based IDS using
response time analysis of CAN that has promising preliminary
results. Future work will evolve our approach to reduce false
positives and to consider sporadic and aperiodic messages.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No. CNS 1646317 and CNS
1645987.

REFERENCES

[1] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage,
“Experimental security analysis of a modern automobile,” in 2010 IEEE
Symposium on Security and Privacy, May 2010, pp. 447–462.

[2] P. Kleberger, T. Olovsson, and E. Jonsson, “Security aspects of the in-
vehicle network in the connected car,” in Intelligent Vehicles Symposium
(IV), 2011 IEEE. IEEE, 2011, pp. 528–533.

[3] T. Hoppe, S. Kiltz, and J. Dittmann, “Security threats to automotive can
networks–practical examples and selected short-term countermeasures,” in
International Conference on Computer Safety, Reliability, and Security.
Springer, 2008, pp. 235–248.

[4] K. Tindell, A. Burns, and A. Wellings, “Calculating controller area
network (can) message response times,” in Distributed Computer Control
Systems 1994. Elsevier, 1995, pp. 29–34.

[5] K. Tindell, H. Hanssmon, and A. J. Wellings, “Analysing real-time
communications: Controller area network (can).” in RTSS, 1994.

[6] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller area
network (can) schedulability analysis: Refuted, revisited and revised,”
Real-Time Systems, vol. 35, no. 3, pp. 239–272, 2007.

[7] S. Punnekkat, H. Hansson, and C. Norstrom, “Response time analysis
under errors for can,” in Real-Time Technology and Applications Sympo-
sium, 2000. RTAS 2000. Proceedings. Sixth IEEE. IEEE, 2000.

[8] I. Broster, A. Burns, and G. Rodriguez-Navas, “Timing analysis of
real-time communication under electromagnetic interference,” Real-Time
Systems, vol. 30, no. 1-2, pp. 55–81, 2005.


