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Abstract

The security and privacy of automotive vehicles is a significant problem to address.

By adding functionality to enhance safety and comfort, vehicles increasingly depend on

electronic control units (ECUs) that communicate through the in-vehicle networks such as

the controller area network (CAN). The proliferation of these ECUs in modern vehicles

has opened up the vehicular system to cybersecurity risks and attacks. This is because

the attack surface of the vehicle increases proportionally to added functions and can be

infiltrated through physical or remote access to the vehicular networks. Protecting these

networks against attacks has been challenging as the network does not implement any

security protocol that can protect the vehicles.

Security solutions such as digital signatures, message encryption, and authentication

have been proposed. However, their adoption has been taxing because of the algorithms

conflict with the size, weight, power, and cost constraints of the embedded devices. Also,

traditional algorithms proposed for the vehicular network do not consider strategies for

recovering from detected anomalous or malicious events on the network bus of the vehicle.

Therefore, this dissertation introduces a novel fail-operational intrusion detection algorithm

that can detect when an attack is imminent in the vehicular network, block the attack from

propagating through the network and recover the compromised component.

We developed an algorithm to extract the real-time model parameters of the CAN bus by

monitoring the release time of message frames on the bus and develop a specification-based

intrusion detection system (IDS). Using an anomaly-based supervised learning approach

with the real-time model as input these mappings are then used to detect message frames

that do not conform with the extracted timing specification. Furthermore, when a malicious

message is detected, an error frame is transmitted to invalidate the frame from being acted

on by the other nodes transmitting on the bus and a reboot based recovery approach is

initiated to regain the initial state of the compromised node.
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We evaluate the effectiveness of the timing model specification with real CAN logs

collected from different passenger cars from real-world scenarios and with simulated and real

attack datasets. Experimental results show that the algorithm can effectively detect data

injection attacks with low false positive rates. Compared with other detection approaches

using the timing features of CAN bus messages, our algorithm shows a better performance

in detecting malicious events in the CAN bus of the evaluated vehicles. Also, we developed a

proof-of-concept implementation of our approach to show that FO-IDS can be implemented

on the CAN bus to demonstrate its applicability and evaluate the effectiveness of our

recovery strategy with minimal overhead on the bus operation.
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Chapter 1

Introduction

The connected car industry is quickly growing and by some estimates will account for

almost $40 billion in annual revenue by 2020 [1]. This growth is led by Cyber Physi-

cal System (CPS) advancements in enhancing safety and automation, and by expanding

use of Internet connectivity for in-vehicle infotainment, which brings connected cars into

the Internet of Things (IoT). These applications have increased the cyber connectivity,

complexity, and contents of vehicles, as demonstrated by the rising number of Electronic

Control Units (ECUs), wireless communication interfaces, and software lines of code in the

modern vehicle.

Vehicles may contain over 100 embedded control systems, or ECUs, interconnected

through the in-vehicle network that facilitates their communications. ECUs perform dis-

tinct operations and function individually as a node on the vehicle network. Common

networks include the Controller Area Network (CAN), Local Interconnect Network (LIN),

and FlexRay. Specifically, our focus is on CAN which is the most commonly used bus system

as the automotive network. In CAN topology, each ECU is connected to the same channel

for communication through protocols specific to CAN bus, and messages are broadcast to

the entire network.

The connectivity and complexity of CPS and IoT have led to a dramatic increase in

vehicle functionality, but have also left the vehicular systems, including the safety-critical

systems, vulnerable to cybersecurity risks and attack [2]. Such vulnerabilities across the au-

tonomous vehicle, vehicular ad-hoc networks, vehicle-to-vehicle, vehicle-to-infrastructure,

connected car, intelligent transportation system, and even traditional (non-connected) au-

tomobiles motivate adversaries to launch cyber attacks against vehicles [3]. Today’s car
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lacks the necessary security mechanisms to protect the vehicular system from attack. The

security of connected cars has become a significant concern for the automotive industry.

A critical asset to secure is the automotive in-vehicle network, which facilitates com-

munication between ECUs over multiple physical networks and protocols with the most

prevalent being the CAN bus. An adversary may subvert the in-vehicle network through

attack surfaces that increase proportionally to new vehicle features. Physical access to the

On-Board Diagnostic Generation Two (OBD-II) port can be used to easily compromise

the network, while remote access through a wireless or cellular connection can significantly

increase an attack’s scalability and reduce exposure of the attacker. Checkoway et al. have

demonstrated Bluetooth attacks [4], while Miller and Valasek [5] accessed a Jeep Cherokee

through its WiFi network by exploiting a weakness in its password generation protocol.

Once access to the in-vehicle networks is achieved, the attacker can manipulate and delete

data, degrade vehicle functions, and even take over control of the vehicle. The limited com-

putational, memory, and power resources of ECUs hinder the implementation of complex

security mechanisms. Hence, lightweight and computationally efficient algorithms are an

essential requirement in implementing security mechanisms for the in-vehicle network.

Current research on the security of automotive CAN bus has developed varied ap-

proaches to detect malicious and anomalous events but are limited in their detection ap-

proach either in the algorithm or the kinds of attacks that can be detected. Also, none

of these approaches provide a recovery strategy for the vehicle after an attack is detected.

Therefore, this dissertation introduces a Fail-Operational Intrusion Detection System (FO-

IDS) for vehicle networks focusing on the CAN bus. CAN bus is the most common com-

munication interface in modern vehicles. It connects the most critical vehicle components

and a primary target for cyber attackers. FO-IDS addresses the security issues arising out

of the growing use of the access points to vehicular distributed systems that a potential

attacker can exploit. When an intrusion is detected, FO-IDS forces the system under attack

to undergo a mode switch to a predefined fail operational state. The construction of FO-

IDS is divided into two distinct phases: the detection phase that uses the real-time model
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of the CAN bus to specify expected behavior and then detects violations of the model as

signs of a compromised network, and the recovery phase that implements algorithm-based

fault-tolerance approach using a reboot-based recovery.

1.1 Attack and Threat Model

This dissertation focus is on the use of different attack scenarios, in which the goal of

the adversary is to control the vehicle. We assume an adversary is able to receive and

send messages on the CAN bus. A receive operation involves eavesdropping messages, and

a send operation involves transmitting injected (forged or replayed) messages in the CAN

bus. We assume the adversary does not interfere with any regular transmission of messages,

i.e., it does not cause any denial-of-service attack during access. This assumption fits with

the known attacks that penetrate the CAN bus by first subverting a non-critical ECU, and

then eavesdrop and inject messages targeting the critical ECUs, but do so while behaving

according to the bus protocol.

1.1.1 Access Types

The evolution of ECUs has led to new threats and attack vectors that an adversary

can exploit. The landscape of these attacks continues to grow as attackers develop cyber

attacks and techniques. Each connected functionality creates new attack vectors, and the

diverse, heterogeneous supply chain of automotive ECUs frustrates precise definition of the

attack surface. An adversary can gain access to the CAN bus through physical or remote

attack surfaces of the vehicle as depicted in Figure 1.1 to target a particular node (ECU)

and use it as a foothold from which to compromise the entire network.

Physical access means that the attacker has a direct connection to the OBD-II port of

the vehicle connected to the CAN bus and all ECUs. The OBD-II port is a must have for all

vehicles sold in North America since 1996. The main purpose of this port is for maintenance

and engine failure diagnostics. This port can be accessed easily by an adversary with the

3
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Figure 1.1: Automotive attack surfaces.

right equipment and a window of opportunity. The attacker can plug a small dongle into the

OBD-II port to gather information or inject messages directly into the vehicle. Protecting

vehicles under such attack is nearly impossible. Also, an attacker can plug a device into

the port and access it remotely. Alternatively, an attacker may gain access to the network

through the use of the Universal Serial Bus (USB) port. Using these methods, multiple

teams have demonstrated overriding security controls to reflash ECUs [6, 7], providing the

opportunity to inject or monitor CAN traffic without leaving any physical traces. In this

dissertation we assume that the attacker does not have physical access to the vehicle.

Remote and wireless attack surfaces are more worrying because the attacker does not

need to physically connect any dongle to the vehicle. These attack surfaces include in-

vehicle Bluetooth and the telematics unit that are common in vehicles for wireless and

cellular connectivity. Checkoway et al. [4] has demonstrated Bluetooth attacks using various

methods of connecting to the communication bus through Bluetooth with malware installed

on an already-paired Android phone, and with a method they developed for unauthorized

pairing. Miller and Valasek [5] demonstrated unauthorized CAN bus access to 2015 Jeep
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Cherokee through its WiFi network that exploits the weakness in its password generation

protocol.

Once access to the in-vehicle networks is achieved, the attacker can produce various

effects which include, but not limited to, data manipulation, control override, data falsi-

fication, data erasure, data replay, and vehicle function degradation. An adversary may

compromise various potential attack surfaces given the scale of ECUs in automotive sys-

tems and their long lifecycles. Consequently, there exist several legacy systems with no

cyber protection capabilities. Hence, a requirement is an efficient approach to security and

resiliency for safety and proper operation.

1.1.2 Attack Goals and Capabilities

In this work, we consider the typical effects of attacks on the communication of the

CAN bus such as message delays and losses. The attackers have various intent and these

can be stated in terms of the impact on the vehicular system operation which includes

the safety of its occupants. These goals include vehicle theft, remote hijack, profit and

desire for infamy or twisted pleasure [3]. Our focus is on message falsifications due to the

malicious activities of the attackers. Hence, we assume that the communication of the CAN

bus is reliable and the constraints for the physical layer implementation are met. These

constraints includes the requirement that all nodes synchronize whenever a transmission

takes place, the arbitration mechanism, and the need for all nodes to agree on the encoded

logical value. Also, we assume that other than the expected transient errors, any possible

discrepancies in the transmitted and received messages are due to malicious activities of

the adversaries.

We identify different scope of attack scenarios which include the adversary a priori

knowledge of the automotive networks, their capabilities and resource revealing tools. The

a priori knowledge of the network allows the adversary to construct complex attacks that

are difficult to detect and with consequences that are severe. Likewise, resource revealing

tools like CAN sniffers facilitates the adversary course in obtaining information sensitive
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to the internal working of the network that violates data confidentiality. Note that these

tools alone are not able to affect or disrupt the vehicle operation but aid the adversary.

We consider several attack scenarios where the goal of the adversary is to place the

vehicular system in an unsafe state while remaining stealthy. These scenarios include Denial

of Service (DOS) attack, replay attack, and false data injection attack. By accessing the

network through physical or remote access an adversary can execute a replay or man-in-

the-middle attack by sniffing the legitimate operation of the network. Using the sniffed

messages, the attacker can perform a data injection attack by emulating a victim ECU

message structure and transmitting arbitrary messages in the bus at random or periodically

to disrupt the normal working of the network.

The physical and safety implications of a successful attacks on vehicle connectivity

system cannot be over emphasized as national governments have taken steps and proposed

bills that would make cybersecurity a necessity of any autonomous driving system.

1.1.3 Attacks Scenarios

Denial of Service Attack. DOS attacks occur when the attacker takes control of the

network resources from reaching their respective destinations and resulting in unavailability

of data for the vehicular systems to operate accordingly. The attack compromises the overall

availability of the network, an essential requirement for the vehicle operation.

Replay Attack. In replay attacks, the adversary performs traffic analysis by intercept-

ing and analyzing communication patterns of nodes and then begins replaying the recorded

data with a different timestamps until the end of the attack.

Bias Injection Attack. This attack involves the interception and altering of the

communicated message and/or the data field of a message in a coordinated way. The

computation of the bias is such that the impact on the system steady is maximized. These

attacks will not only achieve the malicious intent of the attacker to undermine the operation

of the vehicular network or increase the error detection counter considerably but can also

be designed to remain undetected by some of the current anomaly detection algorithms.
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Impersonation Attack. An impersonation attack is performed by transmitting in-

jected messages that use the same ID as a legitimate node. The malicious ECU claim false

identity or imitate other legitimate ECU (stolen identities) in the network. ECUs on the

CAN bus take action based on the most recently received data field of specific IDs that

they are programmed to monitor. By transmitting the injected message soon after the

authentic message of the same ID is transmitted, the attacker’s injected message will be

acted on by the ECUs on the bus instead of the authentic message.

For a successful attack on the CAN bus, the adversary needs to understand when to

transmit the malicious message. For every real message, the attacker needs to send just one

message if the transmission time is known in advance. Otherwise, the message is injected at

a high enough rate to arrive soon after the release time of most of the authentic messages.

An attacker in the CAN MAC layer will be able to sense when the authentic message is

released and fire off a malicious message until it wins arbitration. This attack model will

distort the transmission pattern of the injected IDs.

1.2 Research Questions

Different communication protocols have been developed to support in-vehicle networks.

The CAN is the most popular and the de facto standard vehicle network communication.

Relevant information such as the diagnostics, informative and control data are delivered

through the CAN bus for automotive operations. This information must be secured for the

driver and passenger safety. However, the in-vehicle network includes several security flaws

that have not been addressed.

This dissertation addresses the problem of cybersecurity and resilience in CAN bus.

CAN bus do not naturally support any security feature, and traditional security approaches

are limited in the scope of the detection as they either profile message properties, rely on

the physical features of the ECUs or are not particularly practical during implementation.

Therefore theory and tools to examine and model the CAN bus against cyber and physical
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threats are, thus, lacking and in need to be developed. The following set of questions are

the focus of this dissertation:

1. How can an attack be detected practically and how does the automotive system

respond to such an attack?

2. How can the complex challenges be solved to ensure the safety of user and vehicle

from cyber attackers? What core components or nodes should be considered in the

vehicular network for cyber-secure and resilient vehicular systems?

3. What metrics should be used to evaluate and compare the effectiveness of attack

detection algorithms? How can these metrics be applied to estimate the effectiveness

of defensive actions?

4. What methods can enhance the cybersecurity and resilience of automotive vehicular

networks? Can such methods be implemented and used in real-time?

1.3 Research Contribution

Various research has highlighted the importance of integrating intrusions detection sys-

tems in in-vehicle networks. However, due to the complex algorithms and considerable

calculations involved in their use, the technology cannot be easily implemented.

The significant contribution of this dissertation is addressing the ability of in-vehicle

networks to not only detect intrusions but to correlate the impact on the ability to achieve

minimum normalcy during an attack. The technical contribution of this research is in

understanding how security and fail-operational can be combined to enhance network re-

silience. The contributions of this dissertation are as follows:

1. Specification-based Intrusion Detection using Controller Area Network

Timing (SAIDuCANT). The design and implementation of a specification based

IDS that can identify a potential attack in real time using the schedulability analysis
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of the CAN bus to specify the intended behavior and then detect violations of the

model as signs of a compromised network.

2. Algorithm-based fault-tolerance approach. The design and implementation of

recovery strategy capable of blocking and terminating malicious injected messages

that interface with the detection approach (SAIDuCANT) to perform fault recovery.

3. Metrics for performance. Introduced two new metrics for measuring the perfor-

mance of automotive intrusion detection systems.

4. Experimental evaluation of the approach. Evaluation of the efficiency of the

detection method on real CAN logs generated from passenger sedan vehicles and

simulation of a recovery strategy based on the CAN bus model.

5. End-to-end evaluation. Comprehensive end-to-end evaluation of fail operational

intrusion detection system (FO-IDS) that can detect fault/failure in the system and

perform state recovery.

1.4 Organization of Dissertation

The remaining portion of this dissertation is organized as follows. Chapter 2 discusses

the primer on in-vehicle networks, their fault tolerant capabilities, the security challenges

and the security mechanism that can be adapted to counter these challenges. Chapter 3

provides a comprehensive survey of background and related work on intrusion detection

systems. Also, related work on novel approaches for anomaly detection in other domain

is discussed. Chapter 4 outline the details of sequential anomaly detection using adap-

tive cumulative sum change-point approach. Additionally, the experiment, the evaluation

criteria, and performance of the detection approach are discussed. Chapter 5 discusses

the response time analysis of the CAN bus and describes the specification-based detection

approach using the timing model of the CAN bus. Furthermore, the chapter highlights
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the proposed performance metrics and how they are used in the evaluation. Chapter 6

discusses the recovery approach coupled with the detection mechanism with an analysis of

both approaches. Finally, Chapter 7 concludes the dissertation and provides a summary of

the accomplishment along with an outline of future work.
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Chapter 2

Background

In this chapter, we provide an insight into in-vehicle networks and intrusion detection

systems as well as a preliminary concretization of the intrusion detection systems for typical

in-vehicle network environments.

2.1 Primer on In-Vehicle Networks

A network is a system of interconnected devices in which information can be shared

through the transportation medium. While a standard local area network consists of a

group of computers, hubs, printers, etc., sharing resources and communicating with each

other, an in-vehicle network consists of several complex control units. Such control units

include engine management system, transmission control system, the electronic stability

control program. These modules communicate via the data bus in real-time to assist in

the vehicle operation. Electrical and electronic systems in motor vehicles are not always

independent of one another, but influence and complement each other [8]. The demand for

enhanced safety, comfort and stringent legal requirements on emission gases for automobiles

rapidly increased the number of electronic systems, which in turn increased the demand in

the scope of exchanged information in the data bus that led to the development of serial

bus system.

An in-vehicle network consists of nodes, gateways, and buses. Figure 2.1 shows a typical

in-vehicle network for an automobile. A node is an ECU, which is connected to the bus,

the shared data transfer media. Together these buses and nodes form a network. There

are many different types of network bus domains in an in-vehicle network, from the most
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Figure 2.1: Automotive In-Vehicle Network

common CAN, to LIN, and Media Oriented Systems Transport (MOST).

Data is transferred from one network to another through the gateway module, which

plays a vital role in the functionality of the ECUs. These ECUs have connectivity to

different types of vehicular buses, and the gateway module is tasked with the responsibility

of transmitting data between various vehicle domain bus systems. These transferred data

between buses with or without the same protocol are critical to ensure the ECUs have the

right information to their required function. For example, suppose an ECU on the low-

speed bus sends a message to another ECU on a different CAN bus, say the high-speed bus,

the gateway is responsible for baud rate and voltage conversion on the bus. Therefore, the

gateway is the enabler of communication in the in-vehicle network and functions as a data

router as well as a central computing unit between vehicle network domains. Additionally,

the gateway module serves as a host for other applications and functions such as vehicle

energy management or functional server of the vehicle. A comparison of the various buses

of the in-vehicle network is shown in Table 2.1.

LIN is a cost-effective and deterministic communication system based on serial commu-
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Table 2.1: In-Vehicle Network Bus Comparison

Bus CAN LIN FlexRay MOST
Application Powertrain,

Chassis, Body
Control, Safety

Door/Seat, En-
gine/Climate,
Roof, Steering
Wheel

X-by-Wire,
Body Control
Module, Stabil-
ity Control

Telematics,
Multimedia

Area Used Soft real-time Subnets Hard real-time Multimedia
Message
Transmission

Asynchronous Synchronous Synchronous,
Asynchronous

Synchronous,
Asynchronous

Architecture Multi-Master Single-master,
Multiple-slave

Multi-Master
up to 64 nodes

Single-Master
up to 64 nodes

Access Con-
trol

CSMA/CA Polling TDMA TDM
CSMA/CA

Data Rate 1 Mbps 20 kbps 10 Mbps 25 Mbps
Message Iden-
tification

Identifier Identifier Time slot Bits stream

Physical Layer Dual-Wire Single Wire Dual-Wire
(Optical Fiber)

Optical Fiber

Error Protec-
tion

CRC Parity
bits

Checksum Par-
ity bits

CRC Bus
Guardian

CRC System
Service

Latency Jitter Load depen-
dent

Constant Constant Data stream

Babbling Idiot Provided n/a Provided n/a
Extensibility High High Low High

nication protocol for connecting ECUs with smart sensors and actuators. LIN is a single-

master, multi-slave, Universal Asynchronous Receiver-Transmitter (UART)-based network

architecture that uses a single wire to transmit data. In the in-vehicle network, LIN is

primarily used for short distance network communication in the area of comfort functions,

such as door locks, car seat, mirrors, etc., because of their low speed requirements. FlexRay

is a scalable, flexible high-speed, time-deterministic communication system that is used in

safety critical areas of an automobile. FlexRay offers data transfer with high bit rates (10

Mbit/sec per channel), fault tolerance, and guaranteed compliance with the transfer prop-

erties (scalable data transmission). FlexRay is designed to support flexible network layout

such as bus (multi-drop), star, or hybrid topology and it complements the CAN and LIN
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bus because of its suitability for both powertrain systems and x-by-wire systems. MOST

Infotainment network is a dedicated serial communication system for transmitting multime-

dia streaming data such as audio, video and control data via fiber-optic cables. The MOST

bus is a synchronous network that offers plastic optical fiber and coaxial physical layers.

The bus supports a data rate of approximately 25 Mbps in synchronous control channel

and 14.4 Mbit/s in asynchronous mode of transmission. MOST supports point-to-point

network topology via the ring topology.

2.1.1 Controller Area Network (CAN)

CAN bus was first introduced in 1991 to mass production of motor vehicles [8] and it

is the most commonly used bus system in automotive network. CAN is an asynchronous,

serial, multi-master communication network protocol that connects electronic control units

(ECUs) in a transport network. CAN supports bit rates in the range of 1Kbps to 1Mbps.

Low speed CAN normally has a data rate up to 125Kbps while the high speed CAN has

a data rate of 125Kbps to 1Mbps. Beyond automotive applications, the CAN protocol is

being used as a generic embedded communication system for micro-controllers as well as a

standardized communication network for industrial control systems and avionics [9].

CAN is a message-based protocol that uses a lossless bitwise arbitration to transmit

binary signals data. It uses the term dominant bits to represent the logical 0 and recessive

bits for the logical 1 signals. When the voltage difference between the two wires is large,

the state is dominant. The state is recessive when the voltage difference is small between

the two wires. Dominant state overwrites the recessive state when two or more ECUs send

messages at the same time. As shown in Figure 2.2, data is transmitted between ECUs

in the Data Frame of the CAN packet, which include an Arbitration field, Control field,

Data field and a Cyclic Redundancy Check (CRC). The CAN protocol includes collision

detection and avoidance, error detection, signaling, and fault confinement.

The CAN bus communication follows the Open Systems Interconnection (model) (OSI)

model with four different layers which include the application, object, transfer and physical
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Figure 2.2: CAN Message Structure

layers. As shown in the Figure 2.3, CAN bus usually requires three of the seven OSI layers

for on-board communication except for the OBD. These layers are the Physical Layer, the

Data Link Layer, and the Application Layer. The process of signal transmission between

different medium is defined in the physical layer while the transfer layer denotes the CAN

protocol kernel which comprises message framing, arbitration, validation, acknowledgment,

error signaling and detection, fault confinement, and transfer rate and timing. The object

layer is involved in message status, filtering, and handling [8].

CAN efficiently implements static fixed priority non-preemptive scheduling of messages

through bus arbitration. CAN messages may be periodic, sporadic, or aperiodic. Periodic

message instances arrive at a regular interval with a fixed length called period. Sporadic

messages recur with a minimum inter-arrival time between successive instances, while ape-

riodic message instances occur at arbitrary times. The period of a message is the fixed

time interval after which a message releases another instance.

Each transmitting message goes through the arbitration process to determine which

wins the bus. When a message wins arbitration and starts transmission, it becomes non-

preemptable. Messages win arbitration according to their priority, which is determined by

the message identifier (ID). A message with a lower ID has higher priority.

CAN implements the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)

mechanism with no central controller for the network itself. The CAN protocol does not

use an addressing scheme, but instead packets are broadcast to all nodes. The connected

ECUs communicate through protocols specific to the CAN bus. When two or more ECUs

transmit messages simultaneously, arbitration is done and the dominant (logic 0) wins as
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low-valued identifiers always have higher priority to access the bus. Any node (ECU) may

start a transmission if it determines that the bus is idle. When an ECU starts to trans-

mit a Data Frame, Start of Frame (SOF) is transmitted, then the first bit of ID field is

transmitted. When two or more ECUs attempt to transmit different bit values at the

same time, the dominant bit overwrites the recessive bit by physical implementation of

CAN. The ECU which is attempting to transmit a recessive bit cancels its transmission

whenever it recognizes that another ECU is attempting to transmit a message with higher

priority. This way when arbitration is realized, only the message with the highest priority

is transmitted on the bus [10].

CAN bus is susceptible to faults due to Electromagnetic Interference (EMI). EMI errors

can be modeled as a random single bit fault in CAN bus, which if detected by any receiver

will signal an error frame and cause retransmission of the original message [11, 12]. If

an error is detected either by the sending node or in the CRC field, the error is signaled
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directly to all the nodes on the bus. The receiving nodes will discard the received erroneous

message, and the sending node, assuming only a transient fault on the wire, then enters

arbitration to retransmit the message frame. The error recovery process transmits up to

31 bits in the worst case (the error signaling and recovery time is typically between 17 to

31-bit times) in addition to the retransmission of the message.

CAN bus implements no security mechanism such as data encryption, authorization or

authentication because it was designed as a closed network. CAN protocol does not use an

addressing scheme, instead packets are broadcast to all nodes. Therefore, CAN messages

are not immune to spoofing attacks since messages contain no information about the sender

and the broadcast nature of the bus can allow an intruder to easily eavesdrop, intercept,

and transmit invalid messages on the network.

2.1.1.1 CAN Frames

Message transfer is established and controlled by four different frame types in CAN

protocol. They include a data frame, remote frame, error frame, and overload frame. The

Data Frame transfers data between the nodes on the bus (from the transmitter to the

receiver). A unit in the bus transmits the Remote Frame to request the transmission of

the Data Frame with the same identifier. On detecting a bus error, an Error Frame is

transmitted by any unit in the bus to signal the occurrence. The Overload Frame is used

to provide for an extra delay between the leading and succeeding Data or Remote Frames.

Data transmission occurs in the Data Frame, and the data is placed in the Data Field,

which can be transmitted periodically or otherwise. One Data Frame can transmit 0-8 bytes

data. The Data Frame comprised seven different fields. The arbitration field contains the

11-bit identifier and the 1-bit Remote Transmission Request (RTR). The message identifier

field represents the ID of each message and its priority while the RTR field distinguishes a

data frame from a remote frame. A message with lower ID have higher priority, and when

two or more nodes start transmitting messages at the same time, arbitration is done, and

the message with the highest priority gets to transmit. Arbitration mechanism guarantees
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no information or time lost. When in arbitration, the transmitting node compares the level

of the transmitted bit with the level monitored on the bus. If these levels are equal, the

node may continue to send else, if a dominant level is observed, the node has lost arbitration

and must withdraw without sending one more bit. This way, arbitration is realized, and

messages with the highest priority get transmitted on the bus.

A message that announces an error is called an Error Frame, which is composed of a

6-bit error flag and 8-bit recessive. There are several kinds of errors defined by the CAN

protocol while sending or receiving a message. These errors are; Bit Error, Staff Error,

CRC Error, Form Error and ACK Error. When a node detects any of these five errors, it

transmits an Error Frame to all nodes to control the error as depicted in Figure 2.4. A

bit error occurs when the transmitted bit logic differs from the received bit logic. When

a bit stuffing rule is violated, a stuff error occurs. When an error is detected in the CAN

controller, the values of the Transmit Error Counter (TEC) and Receive Error Counter

(REC) are increased. If the transmission ECU detects a bit error or a stuff error, the TEC

of the ECU increases by 8.

2.1.1.2 CAN Error Management and Fault-Tolerance

The CAN specification protocol includes a control mechanism for error detection, sig-

naling, and fault confinement. The error detection and signaling of the controller ensures

that data flowing through the network is correct and consistent. Defective nodes are pre-

vented from interrupting the operation of the network by placing them in a passive, or

bus-off state. The CAN protocol provides a level of error detection such as the cyclic
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redundancy check that performs error checking on the content of the data frame, acknowl-

edgment check, monitoring, and bit stuffing. When an error or a fault is detected by the

CAN controller, the transmission is interrupted by sending an error frame immediately.

The message is canceled at all receiving nodes to ensure consistency, and the sender can

attempt to resend the message at a later time by further bus arbitration. CAN uses a

twisted pair cable to communicate at speeds up to 1 Mbps with up to 40 devices. The

use of balanced differential receivers and twisted-pair cabling enhance the common-mode

rejection and high noise immunity of a CAN bus.

Signaling is differential which is where CAN derives its robust noise immunity and

fault tolerance. Balanced differential signaling reduces noise coupling and allows for high

signaling rates over twisted-pair cable. Balanced means that the current flowing in each

signal line is equal but opposite in direction, resulting in a field-canceling effect that is

a key to low noise emissions. The use of balanced differential receivers and twisted-pair

cabling enhance the common-mode rejection and high noise immunity of a CAN bus.

2.2 Security Challenges of Automotive In-vehicle Net-

works

Security of the in-vehicle network has been a major challenge for the automotive in-

dustry. In-vehicle networks are originally designed to be a closed system that does not

need to communicate with an external network. Hence, the security of the network was

not explicitly addressed. However, due to the increase in vehicle functionality, in-vehicle

networks are connected to the external network with little or no provision for security.

With no security mechanism in place, an attacker will be able to access the network and

perform unauthorized actions. These actions may cause system malfunction and lead to

safety-critical hazards such as accidents on the road.
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2.2.1 Security Challenges of CAN

There have been several publicized attacks on the vehicular network by researchers

that requires cyber protection. These attacks do affect not only the vehicles but also

the infrastructure which in turn influence the traffic situations. Securing automotive in-

vehicle networks is challenging because of resource constraints and the need to maintain

predictable performance of the ECUs. Due to their low-cost nature and low data rates,

most ECUs have limited computing power and memory to implement security mechanisms.

Automotive networks have significantly lower transmission capability compared to network

systems. CAN bus has a maximum and nominal data rate of 500 Kbps and the CAN

base frame with 11 bits identifier has a maximum of 134 bits. With an original frame of

maximum payload (64-bit), a security mechanism that adds message authentication codes

to this frame might result in it splitting into multiple smaller frames. This could in turn

increase communication overhead due to increased bus utilization.

The CAN bus has inherent vulnerabilities to eavesdropping, denial-of-service, message

injection, and impersonation attacks because of its broadcast nature, lack of message au-

thentication, lack of message encryption, and message prioritization.

2.2.1.1 Broadcast Nature

Every CAN message is broadcast to all nodes in the network. The ECUs then decide

whether the message is meant for them, to act on. Broadcast allows for an intruder node

to easily eavesdrop and analyze the messages transmitted in the network.

2.2.1.2 Lack of Message Authentication

A CAN message does not contain any information that indicates its source. A receiving

node is unable to distinguish a malicious message from a benign one since there is no built-

in message authentication mechanism. Hence, an adversary can easily spoof messages and

take control of the vehicle.
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2.2.1.3 Lack of Message Encryption

Message encryption provides confidentiality and integrity. CAN network implements

no message encryption, and an adversary can easily analyze, modify and inject malicious

messages into the network.

2.2.1.4 Message ID Priority

In CAN network, the messages with smaller message ID has higher priority. Messages

with higher priority always win arbitration during transmission, and the dominant bit

always overwrites the recessive bit when two or more ECUs attempt to transmit different bit

values at the same time. Thus, a malicious node can deny legitimate nodes by continuously

transmitting higher priority messages that will block the legitimate messages, which is a

denial of service attack (DOS).

Previous studies on physical and remote access on the CAN network have shown several

vulnerabilities in the security of the in-vehicle network. Possible attack vectors that may

be exploited by an adversary include message sniffing, malicious messages injection, and

denial of service attacks to disrupt the normal vehicle operations.

Message injection attacks involve the ability to inject sniffed or dominant message bit

into the message frame of the CAN bus by impersonating a legitimate ECU to control

other ECUs. Similarly, continuous message injection and generating continuous dominant

bits will completely prevent other nodes from transmitting messages on the bus causing a

denial of service attacks to communicating ECUs. This kind of attack can be directed to a

single ECU or compromise the entire bus communication.

Message injection attacks can be achieved through single, multiple or massive message

ID injections to disrupt the bus operations. Injecting a single message ID continuously into

the CAN bus aims to make the vehicle conform and operate in a manner corresponding

to the injected message. Multiple message ID injections aim to cause malfunction of the

vehicular systems. Massive injections of messages or flooding the CAN bus with thousands
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of messages per second can paralyze the whole operation of the bus causing a denial of

service (DoS) attack and endangering the ability to control the vehicle. An impersonation

attack occurs when the injected message ID is one used by a different ECU than the

(malicious) sending ECU.

2.3 Intrusion Detection Systems (IDSs) for In-Vehicle

Networks

Several IDSs have been proposed for securing the in-vehicle network. Both specification

based and anomaly-based detection approach have been addressed in automotive domain.

Prior approaches are explained below.

2.3.1 Intrusion Detection Systems (IDSs)

Intrusion is an unauthorized or unapproved activity in a computer system or network

and is defined as attempt to compromise the confidentiality, integrity, availability, or se-

curity mechanisms of a computer or network [13]. The security of a network has been an

important topic since the inception of computer networks.

An IDS is a security tool that monitors network traffic to identify and report possible

attacks within the network. Usually, an IDS consists of sensors, management and report-

ing systems. The sensors are the monitoring agents in the network. They collect real time

network or host data to detect any malicious activities. IDS are designed to reveal intru-

sions, they are required not to introduce new weaknesses to the system. IDS are commonly

classified as network-based IDS (NIDS) and host-based IDS (HIDS). HIDS monitors the

operation of a computer system such as systems calls, file systems, running processes, etc,

and the network traffics on its network interface. NIDS monitors and analyzes incoming

network traffics on one or more network segments. Many IDS can also be classified by their

detection methodologies as anomaly-based, signature-based, or specification-based. Worthy
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of note is that IDSs can only detect an intrusion, and they are not able to offer compre-

hensive protection for network or information systems. Preventive and reactive measures

against detected attacks have to be implemented in order to have a secure network.

2.3.1.1 Anomaly-Based Detection

Anomaly-based intrusion detection method detects an attack based on the deviations

from the established normal activities profiles [14]. Any activities that exceed the prede-

fined threshold are considered an intrusion (anomalous behavior), while activities below

the threshold are considered normal behavior. Anomaly detection finds patterns in data

that deviates from the normal behavior. Anomaly detection has the ability to detect new

or unknown attacks and, likewise, has the potential of generating many false positive (false

alarms). One major advantage of this detection method is the ability to customize the

baseline of normal activities of a system, and new threats can be detected without need-

ing an update. Anomaly detection based on supervised approaches has an advantage in

detecting novel or modified attacks.

2.3.1.2 Signature-Based Detection

In signature based intrusion detection method, IDS detects an attack based on prede-

fined rules of different security attacks. Signatures of earlier known attacks are generated

and stored in the IDS internal database. These are used as a reference to detect future

attacks. Any system or network activities that match the stored signatures are considered

an intrusion. The advantage of this detection method is that it can detect known attacks

efficiently with low false positive rate. However, the difficulty in defining its rule set is a

major drawback. Furthermore, signatures are very ineffective in detecting new attacks and

variants of known attacks, because a matching signature is still unknown for these kind of

attacks [15]. A signature-based IDS works just like an antivirus software, and keeping the

signature database up to date is sometimes a daunting task.
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2.3.1.3 Specification-Based Detection

Specification-based intrusion detection is a form of anomaly based intrusion detection

where no user, group or data profiling is used. Instead legitimate behaviors are specified,

and a node’s misbehavior is measured by its deviation from the specification [16]. In

specification based detection method, expected behavior of critical network components

are manually extracted and crafted as security specifications [17]. These specifications are

used to characterize the legitimate behavior of the systems and any deviation from these

behaviors are considered an intrusion. Intrusions which normally cause an incorrect object

behavior can be detected without any exact knowledge about them. Specifications that

are manually defined usually provide low false positive rate when compared with anomaly

based detection method [18]. An advantage of this method of detection is that the system

is effective immediately when the specifications are defined as there is no user or data

profiling involved. However, the amount of work required in generating specifications is a

major drawback of this approach.

2.3.2 Response Type

An IDS has two different response types in general, active and passive: An active

response IDS provides an automatic response immediately when an attack is detected

while passive response IDS are those that produce an alarm for a detected attack.

2.3.2.1 Active Response

Minimizing the effect of intrusion and thwarting further damage in a target system is the

main idea of the active response IDS. Active responses can be described by three different

categories: collecting additional information about the attack to resolve the attack type

and effects, changing the environment by blocking or reconfiguring the system components

and taking action against the intruder [19]. An IDS with an active response mechanism

requires a real-time detection method since the difference in time of the start of an attack
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and the detection exposes the system to exploitation. A major concern of this method is

the likelihood of false response, such as blocking normal traffic, because of an incorrect

implementation or configuration [20].

2.3.2.2 Passive Response

The response is intended to notify the user of the system or an administrator of potential

intrusion rather than taking actions automatically to halt the attack. The alarm may come

with a report that includes system logs, potential vulnerabilities, and attack types to allow

the administrator to perform a further investigation. A major issue of this approach for

critical systems is the delay between the intrusion and the human response [21].
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Chapter 3

Related Work

Security problems of in-vehicle networks have been studied over the years by several

researchers [22]. Koscher et al. [23] were the first to demonstrate and perform practical

attacks on vehicles. The authors demonstrated complete control of a wide range of automo-

tive functions by sniffing the CAN bus and reverse engineering of ECU code. These attacks

include disabling the brakes, stopping the engine, and inserting malicious codes in the car’s

telematics unit and that will ultimately delete any proof of its presence after a crash. They

were able to launch these attacks by directly interfacing with the OBD-II port and remotely

using the external facing vulnerabilities of the car. The authors provide comprehensive ex-

perimental results to specific attacks by assessing the behavior of real automobiles and its

components. Hoppe et al. [24] demonstrated practical attacks on the CAN bus and their

vulnerabilities, and demonstrated an anomaly detection method by looking at frequency

of messages transmitted on the bus while Checkoway et al. [4] presented an experimental

analysis of the externally-facing attack surfaces in a modern automobile.

Existing works have applied cryptographic techniques to in-vehicle networks, such as

digital signature, encryption, and message authentication codes [25, 26, 27, 28, 29, 30, 31],

but the communication overhead of these techniques are very high, making them unsuitable

or at least difficult in practice for the CAN bus.

A plethora of automotive in-vehicle network IDSs have been developed over the years [32,

33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44] that explore methods of detecting anomalies

as indicative of intrusions. We investigate how researchers are applying different detection

techniques to securing CAN bus. In Table 3.1, we summarized some of these works, the

type of intrusion detected and their evaluations. Portion of the work presented in this
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chapter has also been discussed in [45].

Table 3.1: Comparison of Proposed IDSs for In-Vehicle Networks

Detection Feature Proposed System Intrusions Detected Evaluation

Message Timing Feature

Miller and Valasek (2016) [7] Message Injection Live Road Tests
Gmiden (2016) [46] N/A No Evaluation

Song (2016) [38] Message Injection Live Road Tests
Taylor (2015) [47] Message Injection Real Vehicle Simulation
Moore (2017) [42] Message Injection Real Vehicle Simulation
Young (2019) [48] Message Injection Real Vehicle Simulation

Olufowobi (2019) [49] Message Injection Real Vehicle Simulation

Rule-Based

Hoppe (2011) [50] Message Injection and Deletion Testbench Simulation
Müter (2010) [32] Message Injection No Evaluation
Larson (2008) [51] Known Attacks with Defined Signatures Theoretical Simulation

Cho and Shin (2016) [52] Bus off (DoS) Real Vehicle Simulation

Entropy
Müter (2011) [53] Various Attacks that Effect System Entropy Real Vehicle Simulation

Marchetti (2016) [39] Message Injection Real Vehicle Simulation

Physical Characteristics
Cho and Shin (2016) [37] Spoofing Real Vehicle Simulation

Ji (2018) [54] Injection and Suspension Attacks Testbench Simulation
Choi (2018) [43] Bus-Off Attack Real Vehicle Simulation

CAN Data Fields

Boudguiga (2016) [41] Message Spoofing No Evaluation
Markovitz (2017) [55] N/A Real and Simulated CAN Traffic

Kang and Kang (2016) [36] Attacks Based off Statistical Features SW Simulation with OCTANE
Jichici (2018) [56] Message injection SW Simulation with CANoe
Taylor (2016) [57] Message Injection Real Vehicle Simulation
Wang (2018) [58] Replay Attack Real Vehicle Simulation

Martinelli (2017) [59] Message Injection Real Vehicle Simulation
Kuwahara (2018) [44] Message Injection Real Vehicle Simulation

3.1 Message Timing-Based IDS

The concept of analyzing the rate of messages for CAN bus intrusion detection was

presented by Miller and Valasek [5]. The number of messages on the CAN bus is the sum

of the number of normal messages and attack messages. By analyzing the distribution

rate of messages, it should be possible to detect anomalous messages. Various researchers

have explored message timing features for detecting anomalies in CAN network. These

works have used message intervals and frequency for detecting cyber threats and attacks

on automotive networks.

Gmiden et al. [46] proposed a simple intrusion detection method for CAN bus based on

the analysis of time intervals of CAN messages. An advantage of this approach is that it

does not require any modification in the hardware layer and implementation in each ECU.
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An algorithm that measures inter-packet timing over a sliding window was proposed by

Taylor et al [47]. Adapted from industrial control systems, the authors applied a flow based

method to the CAN bus to measure changes in the data content and their frequencies then

compared them to the historical value for anomaly detection. Communications between

endpoints of the CAN networks are contained in the flow statistics which are trained using

the One Class Support Vector Machines (OCSVM) for flow classification. The result of this

approach was evaluated using time test statistics of the flow detector and consistent detec-

tion improvement is observed with OCSVM as the number of packet insertions increased

with time.

Song et al. [60] demonstrated a low false positive IDS that uses time as a feature for CAN

bus anomaly detection. The authors proposed a lightweight intrusion detection algorithm

for in-vehicle networks by examining the time interval of CAN messages. They determined

that the time interval is a good feature in detecting message injection attacks in CAN bus

traffic. The IDS computes the time difference in the arrival of every new messages appearing

in CAN network and consider it an injected message if the time interval is shorter than

the predefined normal. The IDS also increases the denial of service attack score by one

per message interval arriving with less than 0.2 ms in a row. The authors claim that their

approach shows an improved performance of better detection accuracy over the message

rate based IDS technique.

Moore et al. [42] used the assumption that most ID signals are frequently and needlessly

sent to create an hypothesis that model and detect anomalies in the inter-signal wait time

of the CAN packet. They proposed that an anomaly detection system monitoring the inter-

signal wait times of CAN bus traffic will provide accurate detection of a regular-frequency

signal injection attacks. The authors conclude that this approach provides a near perfect

true positive and false detection rates as evident in their empirical results.

Using CAN message timing features for attack detection has shown good promise with

minimal change to the vehicular networks. This approach has shown the most success in

identifying known attacks. However, the simplicity of these methods currently limits them
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from detecting well-crafted attacks against the automotive network. While the majority of

demonstrated attacks have been message injection, it is conceivable that there are other

attack methods. Thus, alternative detection approaches need to be examined.

Salem et al. [40] proposed inter-arrival curves to model the behavior of a system using

lower and upper bounds of inter-arrival occurrences of events within a trace. The authors

analyze the behavior of events within a CAN trace then demonstrate how inter-arrival

curves act as a good feature to extract the recurrent behavior of the CAN network for

anomaly detection. However, the authors highlight that inter-arrival curves are not able

to detect anomalies that affect event timestamps. Our approach clearly differs from this

because the timing of each event is considered in detecting anomalies.

3.2 Rule-Based IDS

Early works on detecting intrusions in the vehicular networks utilized rule-based detec-

tion approaches.

Müter et al. [32] introduced an approach for anomaly detection using sensors to recognize

attacks on in-vehicle networks during normal vehicle operation. The authors discussed

the design and the application criteria for attack detection in the network, especially the

CAN bus, without causing false positives. This detection scheme consists of eight different

sensors for detecting an attack. The sensors serve as a criterion for recognizing a threat to

the automobile by monitoring different aspects of the network. In their proposed approach,

the applicability of these sensors is based on different criteria such as the type and number

of messages, the number of buses they need to access, and if the payload of the message

needs inspection. The authors showed sensor data results can be evaluated and how to

integrate the approach into a holistic IDS concept, but provide no information on the

experiment run that provides no false positive.

Hoppe et al. [50] demonstrated practical attacks on the CAN bus and their vulnera-

bilities. The demonstrated attacks include manipulating the electric window lifts, warning
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lights, and the airbag systems. The authors proposed an IDS for in-vehicle networks by

identifying notable attack patterns such as increasing the frequency of messages, the ap-

parent message IDs misuse and communication characteristics of ECUs that can be used

to detect attacks in a vehicle. The authors claimed that the implemented approach is

appropriate in detecting exemplary attacks on the warning light system.

Larson et al. [61] investigated the application of specification-based IDS approach for

the CANopen protocols. They introduce an approach to detect an attack on in-vehicle

networks by creating a set of security specification for in-vehicle networks and compare the

current system behavior with the predefined patterns. They show that potential attacks can

be detected from the trace of extracted information through theoretical simulation. The

authors concluded that the most important ECU to protect is the gateway ECU because

if its compromised, investigated attacks can be performed.

Cho and Shin [52] proposed a type of denial of service attack called bus-off attack

that exploits the error handling scheme of the CAN bus to disconnect or shut down an

uncompromised ECUs. The proposed attack is limited to periodic messages as it uses the

periodic feature of CAN messages for synchronizing its transmission time with the victims.

The authors implement and demonstrate this attack on a CAN bus prototype and an

actual vehicle. Furthermore, they developed and evaluated a countermeasure for detecting

and neutralizing such attacks which involves resetting the ECU or its error counter after

consecutive errors frames occur.

Studnia et al. [62] also proposed a language based IDS which uses language theory to

elaborate a set of attack signatures from a behavioral model of the ECU. This idea involves

automatic generation of forbidden sequences from patterns characterizing the expected

behavior of ECU based on language theory. Formal language is used here to describe a set

of attacks which vehicles may be subject to. This approach describes an algorithm that

can be used to overcome the excessive use of memory which may be necessitated by an

increase in states caused by the language.
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3.3 Anomaly-Based IDS

This section studies the anomaly detection approaches designed to monitor the network

to detect possible anomalies, i.e., deviations from nominal behavior. Anomaly detectors are

assumed to be placed on the network to evaluate its behavior. One of the limiting factors in

implementing complex IDS approach is the computation power of ECUs. Anomaly-based

intrusion detection system has been applied to traditional network-based systems to detect

anomalous behaviors in the network. As most messages in the CAN bus tend to be peri-

odic, detection approach using message entropy, ECU physical characteristics, and machine

learning based approaches have been proposed to analyze and detect anomalous behavior

in the network. Some of the techniques are computationally intensive and may require a

significant redesign of the underlying vehicular architecture for their implementation.

3.3.1 Message Entropy

Müter and Asaj [53] proposed an IDS that records normal traffic and detects anomalies

using an entropic measure. The authors investigate their approach through a different

dimension of information-theoretic detection approach. The first dimension includes the

data abstraction level, considering existing classifiers of the binary, signal, and protocol level

for the data selection. The second dimension involves the information-theoretic measures

used for the detection which includes conditional self-information, entropy, and relative

entropy. Lastly, the vehicle status, or the state in which the vehicle is in, is also considered

in the evaluation. Using these dimensions, the authors evaluate three attack scenarios:

increased frequency, message flooding, and plausibility of interrelated events to reveal that

an information-theoretic detection approach can recognize differences in normal behavior

of in-vehicle networks.

Marchetti et al [39] proposed an experimental evaluation of anomaly detectors based on

the entropy of the in-vehicle network. The algorithm is based on the assumption that the
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entropy values that are too distant from the average entropy are anomalous. Entropy values

are said to be stable over time and distributed normally. The effectiveness of the algorithm

on CAN trace data was evaluated by its ability to distinguish between anomalous (forged)

messages from normal. The authors conclude that anomaly detectors based on entropy

are practicable detection approach for identifying injection attacks on the CAN network.

They claimed that the time granularity used by the detection model has no direct impact

on the performance of the entropy-based detection approach as shown by the experimental

results.

3.3.2 ECU Fingerprints

Cho and Shin [37] introduced a clock based IDS that uses clock skew (timing error)

to authenticate ECUs. The IDS records communications on the CAN bus and creates

fingerprints of the every ECUs on the network. Each ECU is assigned a fingerprint based

on specific clock skew and this is used to distinguish them. The authors proposed that by

analyzing the CPU clock’s behavior, spoofing attacks can be detected in the network.

Similarly, Choi et al. [43] proposed VoltageIDS that leverages the immutable charac-

teristics of the electrical CAN signal to fingerprint the ECUs to detect two different ECUs

sending identical messages.

Lee et al. [63] proposed an IDS called OTIDS that measures the response performance of

network nodes based on the offset ratio and the time interval between request and response

in CAN messages. The authors claim that each node has a fixed response offset ratio and

time interval in a normal operation mode which varies significantly in attack modes. This

difference in the offset ratio and time intervals is used to detect attacks in the network.

Furthermore, Ji et al. [54] investigated the application of cumulative sum algorithm for

detecting identification error produced from the clock drift of ECUs. The authors examine

the CAN communication protocol to learn about the normal and abnormal behavior of

the sending nodes on the CAN bus then used cumulative sum algorithm to detect attacks

through the agency of characteristics of clock drift of in-vehicle ECUs.
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3.3.3 CAN Data Field

Boudguiga et al. [41] proposed an intrusion detection method that makes each legitimate

ECU monitor the data frames on the CAN bus to detect whether another ECU is sending

frames on its behalf. The authors use a hardware security module—a security processor

dedicated to cryptographic computation and secure key storage—in the ECU to enforce

security in the CAN bus.

Markovitz et al. [55] proposed a novel domain-aware anomaly detection system for CAN

bus traffic. They discovered semantically meaningful fields through the inspection of real

CAN traffic. They developed a greedy algorithm to split CAN messages into fields and

classify these fields into specific types they observed. Their anomaly detection system uses

classifiers to characterize the fields and build a model for the messages, based on their field

types in the learning phase. In the enforcement phase, the system detects deviations from

the model. They evaluated their system on simulated and real CAN traffic and achieved

near zero false positives. These methods require a deeper understanding of CAN messages

and reverse engineering of the messages and their data fields.

Kang and Kang [64] proposed a novel intrusion detection technique for the security

of in-vehicle networks using deep neural networks (DNN) to monitor exchanged packets

in ECUs and provide real time response. In their approach, DNN was initialized with

probability-based feature vectors to detect anomalies in vehicular networks and this signifi-

cantly improves the detection rates. They used an unsupervised Deep Belief Net to capture

underlying statistical feature of CAN data and used them to classify messages as benign

or anomalous. Through the use of software simulation, they checked for false positives and

false negatives. They reported a 99 percent detection ratio while keeping false positives

under 1 to 2 percent.

Taylor et al. [57] proposed an anomaly detector using Long Short-Term Memory

recurrent neural network for CAN bus anomaly detection. In this approach, the authors

trained the neural network to predict the payload of the next message. The prediction
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errors are then used as signals for identifying anomalies in the message sequence.

Similarly, Wang et al. [58] proposed a distributed real-time anomaly detection system

based on the hierarchical temporal learning algorithm to learn and predict CAN data

sequence. The detection method monitor CAN ID without reverse engineering of the

bus protocols and can detect not only the known type attacks but can also learn online

continuously from CAN data stream to detect unknown attacks.

Furthermore, Martinelli et al. [59] also proposed detection method to identify attacks

on CAN packets using fuzzy classification algorithms. The authors developed a fuzzy-rough

nearest neighbor classification technique to classify legitimate CAN messages generated by

the human driver and the injected ones.

Using message frequency, Kuwahara et al. [44] proposed a statistical anomaly detection

approach based on supervised and unsupervised learning of message pattern. The authors

assume that there is a likelihood of a malicious message in a sequence if the number of

messages is higher than normal.

3.3.4 Detection Approaches Implemented

While we have comprehensively surveyed relevant related works on securing and detect-

ing anomalous behavior on the CAN bus, in this subsection, we discussed related works in

other domain relevant to the approaches used for our detection.

3.3.4.1 Sequential Anomaly Detection

Here, we present a brief review of recent work on anomaly-based detection techniques

using sequential adaptive CUSUM. Anomaly-based intrusion detection system has been

applied to traditional network-based systems to detect anomalous behaviors in the network.

Change-point detection has been applied to several systems including wireless network

protocols, application, and CPS [65, 66, 67, 68]. Tang et al. [66] used the non-parametric

CUSUM test to find abrupt changes in a process without any a priori statistical knowledge
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and detected the real-time backoff misbehavior problem in IEEE 802.11 based wireless

networks. Huang et al. [67] proposed the use of adaptive CUSUM algorithm for defending

against false data injection attacks in smart grid networks using a Markov-chain-based

analytical model. Also, Kurt et al. [69] applied the generalized cumulative sum algorithm

for quickest detection of false data injection and denial of service attack in the smart grid

in both centralized and distributed settings.

Banerjee and Fellouris [70] studied the problem of decentralized sequential change de-

tection in real-time sensor monitoring systems using CUSUM to observe anomalous events

that change the distribution of the observations in all sensors. Similarly, Li et al. [65]

applied the CUSUM test as a collaborative quickest detection model to identify changes in

distributed ad-hoc networks. Yang et al. [68] introduced the multiple CUSUM-based algo-

rithms to address the Wiener disorder problem with post-change drift uncertainty. However,

to the best of our knowledge, we presents the first application of the change-point detection

approach to identify anomalous behavior in CAN bus.

3.3.4.2 Specification-Based Detection Method

A specification-based detection method relies on specifications that describe the behav-

ior of the system components. These legitimate behaviors of the system are described by

its functionalities and the constraints of other interacting components. The monitoring of

the system activities involves detecting deviations from the sequence of operations outside

of the specifications. Expected behavior of the system components are manually extracted

and crafted as security specifications [17].

Specification-based detection has been applied to several systems including network

protocols, applications, and CPS [71, 72, 73, 74, 75]. Mitchell and Chen [71, 72] proposed

a behavior-rule specification-based IDS for medical CPS and unmanned aircraft systems.

In their approach, they use a binary failure threshold to classify a node as normal or ma-

licious based on the node’s compliance threshold. Esquivel-Vargas et al. [75] proposed an

approach to automatically deploy a specification-based IDS to monitor a building automa-

35



tion system. They developed an approach to generate rules that represent valid device

behavior in BACnet networks that are used by the IDS to detect violations in the network

traffic. This approach was implemented in a passive way and with network-wide coverage.

Fauri et al. [74] proposed an approach to combine formal specification with anomaly-based

monitoring to overcome the semantic gap between network anomalies and actionable alerts

by leveraging the lightweight logical system specification.

3.4 Summary

In this chapter, we reviewed methods proposed for securing automotive vehicular sys-

tems from various attacks and malicious activities. We highlighted the overview of the

detection approach and some of their advantages and disadvantages. We attempted to

clarify and unify the concept of anomalies and intrusion detection regarding automotive

security. This begins with identifying threat models for automotive security and identifying

threats that affect all vehicles and not just one specific model. From a technical perspective,

IDSs can work well for detecting intrusions on the CAN bus. Different implementations of

anomaly detection methods can detect different types of anomalies.

Current approaches focused on the detection of message injection attack as the primary

attack vector for adversary trying to subvert the normal working of vehicular functions.

The link to the next step after detection is to enable prevention; an effective IDS for

cyber-physical systems should have an active response to cyber attacks. We have identified

ways for detecting attacks, but more research is needed on mitigating those attacks after

detection.

Our proposed detection approach captures the behavior and models the timing of the

CAN network messages to extract the specification of the network activities to detect

intrusions. More precisely, we use the worst-case response time analysis of each message

to build a set of specifications for network activities to compare with observed activities

to detect intrusions. Our approach differs from the prior art because we leverage real-time
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schedulability analysis of messages to automate creating a specification. The novelty of

our approach is in the close coupling we create between real-time theory and intrusion

detection, and in the automation of parameter extraction.
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Chapter 4

Anomaly Detection Approach Using

Adaptive Cumulative Sum Algorithm

for Controller Area Network

In this chapter, we describe a novel anomaly-based intrusion detection approach using

the Cumulative Sum (CUSUM) change-point detection algorithm to detect data injection

attacks on the controller area network (CAN) bus. The hypothesis for using this approach

is that anomalies in the network occur at unknown points and produce abrupt changes in

the statistical features of the message stream. We evaluate CAN message properties to

determine different statistical parameters that can be used in the change-detection algo-

rithm to detect anomalous events in the vehicular network. We evaluate the performance

of this approach with real CAN data collected from a sedan car. Portion of this chapter

were previously published in [49].

4.1 Introduction

Detecting changes in statistical properties of a network stream have been broadly stud-

ied in different domains, and change-point detection approach has been applied [76, 77].

The key idea of this detection approach is to model CAN bus messages as a sequence of

measurement over time to describe the vehicle behavior while in operation and subject to

false alarm constraints, the goal is to design a stopping rule to detect changes as quickly as

possible in these messages that do not conform to the normal working of the vehicle. Hence,
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detecting abrupt changes in the network can be formulated and solved as a change-point

detection problem. Due to external and internal events such as malicious and DOS attacks

on the bus, there can be a significant change in the behavior of the messages broadcast

on the CAN bus. Change-point analysis can be used to determine the point or multiple

points in time where the changes occurred and their degrees with a sequential approach

(average delay) while controlling the false alarm rate [78]. Therefore, we implement the

adaptive CUSUM change-point detection procedure for time series analysis to model CAN

bus messages.

This chapter investigates the performance of the anomaly-based sequential change-point

detection using CUSUM algorithm to detect data injection attacks on the CAN bus. The

change-point detection monitors and compares the features of the observed message se-

quence against a predetermined pattern of normal behavior of the bus to detect any signifi-

cant deviation. We leverage the features of the detection algorithm to reduce the number of

false positive and increase the detection accuracy. Also, we examine the performance of the

algorithm with different tuning parameters and the effect of attack intensity. We evaluate

the effectiveness of our approach using a real-world CAN dataset. The datasets represent

different attack scenarios. The main contributions of this chapter are in threefold:

1. We develop a sliding window approach to identify sequential patterns of CAN bus logs

which are used to characterize the adaptive CUSUM algorithm for detecting message

injection attacks in real-time.

2. We used the model to differentiate normal and anomalous messages at varied intervals

based on significant changes compared to a reasonably selected threshold value.

3. We prototype and evaluate the performance of our detection algorithm using CAN

logs generated from a real vehicle.
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4.1.1 Threat Model

We assume that an adversary can perform read and write operation on the CAN bus.

A read operation involves eavesdropping and intercepting messages while a write operation

involves forging, replaying and transmitting anomalous messages on the bus. An adversary

can gain access to the CAN network through physical or remote attack surfaces to target

a particular node or compromise the entire network. To evaluate the effectiveness of our

detection algorithm, we investigate the following attack scenarios:

1. Data injection attack: An adversary can execute a replay or man-in-the-middle attack

by sniffing the legitimate operation of the network. In this attack, a victim ECU

message structure is imitated and injected into the bus at random to disrupt the

normal working of the network.

2. Denial of service (DoS) attack: In a DoS attack, the CAN bus is flooded with too

many messages of high priority keeping the network busy and unavailable to other

nodes.

3. Fuzzy attack: In this attack scenario, the adversary injects randomly spoofed mes-

sages of different ID. As a result, nodes in the network receive lots of messages that

can cause malfunction of the vehicle.

These attacks vectors are connected. An adversary starts by intercepting messages on

the bus and reverse engineer them to understand their properties. The decoded messages

are then injected into the network to alter the vehicle behavior. With this, an adversary

can launch a DoS attack on the network that could paralyze the entire operation of the

vehicular networks. The severity of the impact of potential attacks depends on the vehicular

component targeted by the adversary, i.e., an attack on the vehicle brake system, steering,

and accelerator will have more impact than an attack on the infotainment system.
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4.2 Sequential Change-Point Detection Background

Sequential anomaly detection describes a problem of detecting patterns in an observa-

tion at which one or more abrupt changes occur in a data sequence. Analyzing sequences

in data is a statistical approach and theory for processing data in which the total number

of observations is not fixed but depends somehow on the observed data as they become

available. Therefore, the anomaly detection problem can be modeled as a change-point

detection problem [79]. This work explores the performance of anomaly detection tech-

niques based on the sequential data model using the change-point approach to characterize

the pre-change parameters with unknown post-change parameters. A change-point is an

instance in time where the statistical properties of the data before and after this instance

are noticeably different. It represents a transition in the state of the process that generates

the data. The requirement for quality control motivates the development of change-point

detection [80].

In sequential change-point detection, the goal is to detect as quickly as possible the

point in time a change occurs in a statistical model of data and flag an alert signifying the

change while reducing the false alarm rate. When an attack is detected at time t, the time

series shows a statistical change around or at a time greater than t. For a quick response,

the sequential hypothesis testing is often used when an attack occurs which saves memory

and computation time. Thus, we consider the CUSUM statistics which is the basis of the

change-point detection procedure. With a very light computation load, CUSUM uses the

features of sequential and non-parametric tests to detect attacks in a time series data and

is asymptotically optimal for a wide range of change-point detection problems when the

time series are independent identically distributed (i.i.d.) with a parametric model [76].
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4.3 CUSUM for CAN Anomaly Detection

CUSUM algorithm was first proposed by Page [81] and is based on hypothesis testing

developed for i.i.d. random variables. The CUSUM algorithm is a sequential detection

technique useful for detecting irregular patterns that cause changes in an observation.

There are two different hypotheses to be considered in this approach; the difference in

the statistical distribution before and after the change compared with a threshold. To

detect changes in the distribution, CUSUM periodically computes two sums, the upper

control limit and the lower control limit, which represents the cumulative deviation between

the expected value and the observed value. This detection rule is a comparison of the

cumulative sum with an adaptive threshold which is not only updated online but also

keeps a total memory of the useful information contained in the past observations. An

essential feature of this algorithm is in determining and defining the regular pattern of the

dataset. Deviations relative to this pattern are classified as anomalies when the upper or

lower control limit exceeds a certain threshold. Using a sliding window approach, CUSUM

can detect small shifts in statistical parameters (e.g., mean) relative to the regular pattern.

The output of the algorithm is the potential list of anomalies along with the corresponding

plot of the time series and its anomalies. This detection algorithm is a cost-effective and

straightforward approach that can be adapted to different vehicles. A computing module

(dongle) running the CUSUM algorithm can be connected to the vehicle OBD-II port and

act as a monitoring node on the CAN bus.

4.3.1 Adaptive CUSUM Algorithm

Adaptive CUSUM is proposed to solve the problem of unknown parameters that vary

over time. The combination of the process of detecting change and parameter estimation

is a practice considered to give better performance [77]. The idea is to estimate the pa-

rameters in a continuous form with the CUSUM test starting immediately regardless of
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the estimation accuracy. Since more sample estimation could lead to more accurate esti-

mation, the estimation process continues while performing detection. Therefore, we model

the messages transmitted in the CAN bus using change-point detection procedure.

A change can be modeled using two hypotheses, θ0 and θ1 with thresholds 0 and h.

The first hypothesis represents the statistical distribution of CAN message stream before

the change while the second represent the distribution after the change. The essential

steps in this algorithm are on how to decide between θ0 and θ1 and how to estimate the

time of change efficiently from the measured sample of the message instances. These steps

are called the detection and estimation steps respectively. We follow an online approach

to develop the CUSUM algorithm as described in [82]. The framework of the adaptive

CUSUM algorithm used to model messages transmitted in the CAN bus is described in

Algorithm 4.1.

Algorithm 4.1 Adaptive CUSUM algorithm for change-point detection

1: Initialize:
set the detection threshold h > 0
S0 = G0 = 0
i = 1

2: while the algorithm is not stopped do
3: measure the current sample Mi

4: Si = ln

(
p(Mi,θ1)
p(Mi,θ0)

)
5: Sn = Si−1 + Si
6: Gn = {Gn−1 + Sn}+
7: if Gn > h > 0 then
8: nd ← i
9: t̃c = min1≤tc≤i Stc−1

10: stop and reset
11: end if
12: i = i+ 1
13: end while

Let M = {M1,M2, . . . ,Mn} be a random set of messages observed sequentially, and are

independent and identically distributed on the CAN bus network. Message M represents a

data frame on the CAN bus and each of the messages are released sequentially. Message M
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is said to be ”in-control” at first and each Mi follows a probability density function (PDF),

p(Mi, θ) depending on the deterministic parameter θ. These parameters are assumed to be

known mean µ and variance σ2. This messages may contain a change that occur abruptly at

time t̃c called the out-of-control that is modeled by an instant modification to the value of θ.

Therefore, θ = θ0 before t̃c, pre-change, and θ = θ1 after that, post-change. When a change

occurs, an alarm should be signaled as soon as possible for a proper action to be taken with

few false positives. In the detection step, the problem is to decide between two possible

hypotheses H0 and H1 from observed messages M . The instantaneous log-likelihood ratio

test is used to decide between the hypothesis i.e., test for signaling a change, which is given

by:

Si = ln

(
p(Mi, θ1)

p(Mi, θ0)

)
(4.1)

and the cumulative sum from 0 to n is:

Sn =
n∑
i=0

Si (4.2)

The decision function Gn and the change time estimate t̃c are:

Gn = Sn − min
1≤tc≤n

Stc−1 (4.3)

t̃c = min
1≤tc≤n

Stc−1 (4.4)

Equations 4.2, 4.3, and 4.4 gives the direct form of the CUSUM algorithm. For the

real-time detection of change, the equations are rewritten in a recursive form and are given

by:

Sn = Sn−1 + Sn (4.5)

The decision function Gn compared to a positive threshold is given by:

Gn = {Gn−1 + Sn}+, (4.6)

44



where {a}+ = sup(a, 0). Once the abrupt change has been detected, equation 4.4 is used to

estimate the change time tc from the measured samples M1,M2, . . . ,Mn efficiently. Thus,

the sample size Mi, the reference value k which determines the level of past memory held by

the CUSUM statistics and the varying decision limits h are the tuning parameters required

for operating an adaptive CUSUM.

4.3.2 Detection Approach

A significant feature of the proposed detection approach is the rate at which message

instances are released and transmitted in the CAN bus. In normal operation, each message

instance has a regular frequency or interval. When a message injection attack occurs on the

bus, this rate or interval will change significantly as the ECUs under the attack will also be

transmitting their message. Thus, the rate of messages on the bus is increased more than

double the average rate. To characterize the message frequency, we use a window-based

technique to extract a fixed length of overlapping windows from the attack-free dataset.

The frequency of each message instance Mi in the unique window ωi is maintained and

they form the training set.

The process steps we use in detecting abrupt changes in each window follows as described

in Section 4.3.1. We compute the PDF p(Mi) by calculating the µ and σ2 of each sample

Mi of the dataset using the maintained frequency of message instances in ωi. We then

calculate the CUSUM, Sn as described in equation 4.5 by calculating the instantaneous

log-likelihood ratio Si given by:

Si =
µM1 − µM0

σ2
M

(
Mi −

µM1 + µM0

2

)
. (4.7)

When an abnormal event is detected, and there is a shift in the process mean, the

algorithm terminates and signals an alarm. The algorithm considers at least five average

run length (ARL) before the alarm signals for the out-of-control ARL1 that is measured in

a steady state. The steady-state ARL values are based on the delayed shifts in our chosen
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Table 4.1: Overview of the dataset

Type of Attack Total Normal Messages Injected Messages
DoS Attack 3,665,771 3,078,250 587,521

Fuzzy Attack 3,838,860 3,347,013 491,847
Spoofing the drive gear 4,443,142 3,845,890 597,252

Spoofing the RPM gauge 4,621,702 3,966,805 654,897

parameters.

4.4 Experimental Validation

An evaluation was conducted using real CAN dataset available for research purposes1.

This dataset contains the normal vehicle operation and four different types of message

injection attacks to disrupt the operation of the car. These attacks include DOS, fuzzy,

and spoofing of the gear and vehicle RPM. The recorded datasets are logged through the

OBD-II port of a real vehicle with complete knowledge of the ground truth of the normal

and injected messages.

The DOS attack dataset contains attacks where the most dominant message with ID

0000 is injected every 0.3 milliseconds while the fuzzy dataset contains attacks where ran-

dom message IDs are injected every 0.5 milliseconds to meddle with the vehicle operations.

Other datasets are spoofing the drive gear and the rpm where their respective IDs are in-

jected every 1 millisecond. Table 4.1 shows an overview of the overall number of messages

in the dataset.

To measure the performance of our algorithm, we used the ARL function. The ARL

function is the expected number of samples before alarm signals. The signal can be an

actual shift in the process mean or false alarm. The ARL function takes two values with

respect to θ and is given by: ARL = Eθ[Nd], where Nd is the detection time of the adaptive

1https://sites.google.com/a/hksecurity.net/ocslab/Datasets/CAN-intrusion-dataset
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CUSUM algorithm, and the parameter θ is the assumed constant for all message instances.

With respect to θ, the ARL function takes two values: θ = θ0, the in-control ARL0 is the

expected number of samples before a false alarm, and θ = θ1, the out-of-control ARL1 is

the expected number of samples before a shift in the mean is detected. A specific value

is required for ARL0 while we aim to minimize ARL1 value over a range of process shifts.

We also evaluate the performance by calculating the true positive rate (TPR) and the false

positive rate (FPR) after measuring the true negative, true positive, false positive, and

false negative.

4.4.1 Experimental Setup

The behavior of messages in the CAN bus can be learned by examining the average

number of message instances and intervals between the subsequent message of the same

ID. Our goal is to obtain the optimal parameters by learning these features.

We run our detection algorithm on the attack-free dataset to achieve the lowest possible

false positives based on the selected interval, threshold, and window size. We learned the

number of message instances in 0.335 seconds window with a usual choice of k = 0.5 and

h = 3 as the CUSUM value is never greater than 3 as shown in Figure 4.1. These parameter

values are chosen based on the performance of the algorithm on the attack-free dataset such

that the algorithm reaches desired performance in respect to the mean time between false

alarms ARL0 and mean detection delay ARL1.

As observed in the Figure 4.1, the CUSUM algorithm was run for 14 seconds for the

attack-free dataset for different IDs with multiple instances. The graph stays in-control,

and there is no presence of a change in the mean or false alarm as Gn is calculated. It is

also common to set the value of k at (0.5 to 1) of the standard deviation σ. Therefore, we

varied the value of k using the standard deviation while keeping other variables constant as

depicted in the Figure 4.1. We realized that k at (0.5 ∗ σ) has a better chance of detecting

small shifts early. Cumulative results of the CUSUM are presented using the receiver

operating characteristics (ROC) showing how performance of the algorithm changes with
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(a) Message ID 1F1. (b) Message ID 153.

(c) Message ID 164. (d) Message ID 220.

Figure 4.1: Plots of CUSUM algorithm with reference parameter k fixed to 0.5 and varied
at (0.5 ∗ σ) for attack free dataset.

varying threshold for different window sizes as shown in Figure 4.2. As the window size

increases, the relative variability of messages increases, thus resulting in higher TPR and

FPR.

4.4.2 Experimental Results

We conducted three different experiments with the parameters obtained from the attack-

free dataset to evaluate the adaptive CUSUM algorithm. As in the case of the attack-free
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Figure 4.2: Adaptive CUSUM Algorithm performance on varying thresholds for different
window sizes using RPM dataset

dataset, we assume that the first five windows of the attack datasets do not contain anoma-

lous messages instances and they form the training set used in estimating the parameters.

In our datasets, these windows do not contain any attack data. We expect the mean of the

message instances to change at an unknown time. We set the detection threshold h = 3

to detect attacks very quickly with low false alarm rate. When an attack is detected, the

decision function grows continuously after the change, and an alarm is signaled when it is

greater than the threshold.

For spoofing the gear and the RPM dataset, we identified the injected IDs and plotted

the message instances against time in seconds in the samples and CUSUM graphs corre-

sponding to both IDs. Figure 4.3 shows the plots for the attack-free dataset instances and

the one-sided CUSUM chart for gear and rpm IDs. Visual inspection reveals that there is

no alarm signal as Gn < h.

The corresponding Figure 4.4 shows the same plots with the CUSUM signaling an alarm

when the values of Gn > h. As shown in the figure, the algorithm analyzed the incoming

messages to calculate the CUSUM parameters and started detection when it reached a
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(a) Message distribution (b) CUSUM statistic.

Figure 4.3: Plot of message instances against the time (secs) and CUSUM algorithm for
gear ID with a threshold h = 3 for attack free dataset.

(a) Message distribution (b) CUSUM statistic.

Figure 4.4: Plot of message instances against the time (secs) and CUSUM algorithm for
gear ID with a threshold h = 3 for spoofing the drive gear dataset.

steady state. If Gn ≈ 1 is greater than h = 3, the CUSUM algorithm alert that change

has occurred and an alarm is signaled before the algorithm terminates. Similar plots were

obtained with spoofing the RPM gauge dataset and the DOS attack dataset. The figures

show the successful detection of the injected IDs with a very short delay. By manual

analysis of both datasets, we observe that the first set of injections for the spoofing gear
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dataset was around time t = 1.2682 while our detection algorithm signals the alarm at

t ≈ 1.30. This implies that the detection delay for the gear data injection is nd ≈ 0.032.

Similarly, manual inspection of the RPM gauge dataset reveals the set of injections occurred

at t = 0.9667 seconds, and our detection algorithm signaled the alarm at t ≈ 1.08 seconds

which imply that the detection delay is on the average of nd = 0.113. Furthermore, we

conduct similar analysis on the fuzzy and the DOS attack dataset, and their detection

delays are nd = 0.092 and nd = 0.165 seconds respectively. The corresponding ROC curve

for fuzzy attack dataset is shown in Figure 4.5.

Figure 4.5: ROC curve of varying thresholds for different window sizes using fuzzy attack
dataset.

To enhance the performance of our detection algorithm, we remark that varying the

required parameters k, h, and large enough window size ω improves the detection accuracy.

While executing the algorithm at different time intervals, we obtained different results,

and the number of false alarms ranged between different interval counts. Subsequently,

when the threshold value is lowered with the same window size, a degraded performance
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is noticed, i.e., the false positive rate increased significantly. Similarly, when the window

size is decreased using the same interval and threshold values, we get a high rate of false

alarms.

4.5 Summary

In this chapter, we present an anomaly intrusion detection system to identify message

injection attacks on CAN bus. The proposed approach is based on change-point detection

techniques using adaptive CUSUM algorithm to detect statistical changes and intrusions

in CAN bus message stream. We utilized the instance of messages in a sample window

and carefully chosen tuning parameters to identify differences in the statistical properties

and detect irregular patterns of the messages. Analytical results have shown that the

proposed detection algorithm can efficiently detect data injection attacks with low detection

delay. Through our experiment, we showed that when the required parameters are carefully

selected, there is high detection accuracy with low false alarm rate.

52



Chapter 5

SAIDuCANT: Specification-based

Automotive Intrusion Detection

using Controller Area Network

(CAN) Timing

This chapter introduce a novel algorithm to extract the real-time model of the controller

area network (CAN) and develop a specification-based intrusion detection system (IDS)

using anomaly-based supervised learning with the real-time model as input. Experimental

results show that the algorithm can effectively detect data injection attacks with low false

positive rates. Compared with other detection approaches using the timing features of CAN

bus messages, SAIDuCANT shows a better performance in detecting malicious events in

the CAN bus of the evaluated vehicles. Portions of this chapter have been publish in [83]

and submitted to IEEE Transactions on Vehicle Technology.

In this chapter, a specification-based detection approach is proposed to identify ex-

ploitation of vehicle network vulnerabilities. We focus on the application of schedulability

analysis of the CAN network message trace to build a specification of the valid operation

sequences of the network activities. A formal specification based on the timing model of

the network operations is used to express the set of valid operation sequences of the CAN

network. A deviation from these sequences is tagged anomalous.

We introduce a specification-based intrusion detection system (IDS) that uses the real-

time model of the CAN bus called Specification-based Automotive Intrusion Detection
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using Controller Area Network Timing (SAIDuCANT) to specify intended behavior, and

then detects violations of the model as signs of a compromised network. Given an instance

of a message, we aim to determine if the completion time aligns with the timing model

specification of the message. Our approach to this problem is to infer the parameters

of the real-time model of the CAN bus during normal operation using the schedulability

analysis of the network. The schedulability analysis guarantees that message deadlines will

be met in the worst-case. We derive the timing model specification of a message trace and

hypothesize that messages that do not fit into this timing model are anomalous. Combined

with a simple protocol state machine, the timing model expresses the behavior of CAN bus

from which anomalous deviations indicate an attack is in progress. Although our focus is

on the CAN bus as the in-vehicle network, we expect our results would apply well to any

network amenable to real-time analysis.

The contributions of this chapter are:

1. A method for extracting real-time model parameters from observations of CAN bus

message behavior without prior knowledge.

2. A specification-based IDS based on real-time schedulability response time analysis of

the CAN bus.

3. Two new metrics for measuring the performance of automotive intrusion detection

systems.

4. Prototype and evaluation of real-time model specification-based IDS using real CAN

logs generated from passenger sedan vehicles.

5.1 Response Time Analysis of CAN

Tindell et al. [12, 84] and Davis et al. [85] present a real-time model and worst case

response time analysis of the CAN bus derived from fixed priority response time analysis
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of CPU scheduling. We adopt their terminology and rely on some of their key results in

developing our specification-based approach. For readers familiar with real-time schedula-

bility, the key difference between task scheduling and CAN message scheduling is the use

of messages in place of tasks, and each release of the message is a message instance rather

than a job. A message is parameterized by its period and ID, which is a unique identifier

and also the message’s priority, with a lower ID having a higher priority. Every period

units of time, a message releases another message instance. Each message instance has its

own transmission time and queuing jitter with a data payload of up to 8 bytes specified

in the header field of the frame called Data Length Code (DLC). A message is said to be

schedulable if its response time is less than or equal to its deadline.

Each message is characterized by (ci, ti) and DLCi, data, ei, di are all instance specific of

the message. DLC is the data length code, data is the associated data, ci is the transmission

time calculated from the data length code, ei is the timestamp which represents the time

the message finished its transmission, ti is the message period and di is the relative deadline.

We denote the utilization of the bus with U , i.e., U =
∑n

i=0
ci
ti

. The priority of a message

is based on its arbitration ID. The lower the arbitration ID, the higher priority of that

message. We consider a set of messages M = {M1,M2, . . . ,Mn} on the CAN bus network.

A message M represents a data frame on the CAN bus and each release of a message is

denoted by a message instance. A message instance is released at time ri and is released

periodically. Each message instance is characterized by an invocation period ti, transmission

time ci and a relative deadline di. In this analysis we assume implicit deadline of periodic

messages, i.e., di = ti. A message instance is released at the beginning of its period and

should complete execution by the end of its period. The first instance of a message Mi is

released at time ρi (a phase) which we assume that ρi = 0 in our analysis. Concretely, the

kth instance of Mi, denoted as Mi,k, is released at time ρi + (k − 1)ti and should complete

its transmission by time ρi + k(ti), where (k = 1, 2, . . . ).

Given a set of messages, {Mi | i = 1, 2, . . . , n}, where Mi = (ti, ci), the hyperperiod is

the least common multiple of ti, where (i = 1, 2, . . . , n). Our notation is summarized in
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Table 5.1. M denotes an ordered set of messages, and Mi ∈M is a message with ID i in the

set. Mi,k denotes the kth instance of Mi, which has completion time ei,k. If Mi is periodic,

the time from 0 until the occurrence of the first instance i.e., Mi,1, is the message phase,

denoted by φi. Concretely, the kth instance of Mi, denoted as Mi,k, is released at time

φi + (k− 1)ti and should complete its transmission by time φi +k(ti), where (k = 1, 2, . . . ).

A message may also have a deadline, however we assume a constrained, implicit deadline

(equal to the period). Thus, Mi can be characterized by a 3 tuple (φi, ci, ti), representing

the message phase, the message worst-case execution time, and the period respectively.

Table 5.1: Table of Notations for Response Time Analysis

Variable Definition
M set of messages M = (M1,M2, . . . ,Mn)

Mi ∈M the ith message
ci transmission time
ti message period

t̃i estimated period
Ri worst case response time
Ji the queuing jitter
wi the queuing delay
Bi the blocking time

fi,min lower bound on completion time relative to release
fi,max upper bound on completion time relative to release
Mi,k the kth instance of message mi

φi phase of Mi

ei,k completion time of Mi,k (CAN message time stamp)
τbit the transmission time of a single bit
Ei the error overhead

Davis et al. [85] determine a message worst-case response time (WCRT) by taking the

maximum response time over the instances of the message in a busy period,

Ri = max
q∈[0,Qi−1]

(Ri(q)) (5.1)

where Qi is the number of instances of message Mi that become ready for transmission
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before the end of the busy period, and Ri(q) is the WCRT of instance q. Ri(q) and Qi are

given by

Ri(q) = Ji + wi(q)− qli + ci (5.2)

Qi =

⌈
li + Ji
ti

⌉
(5.3)

where Ji, the queuing jitter of the frame, corresponds to the maximum time variation

between the release of a message instance and queuing the message for transmission; wi,

the queuing delay under faults, corresponds to the maximum time a message can remain

queued before successfully transmitting. This delay may be due to other higher and lower

priority messages using the bus. ci, is the transmission time, which corresponds to the

maximum time a message can take to be transmitted. li is the length of the priority level-i

busy period during which only messages with higher priority to i get transmitted. The busy

period of the message ends at the earliest time that the bus becomes idle or when messages

of lower priority get transmitted. li is found by solving the following recurrence relation

with a starting value of l0i = ci and ending when ln+1
i = lni :

ln+1
i = Bi + Ei(l

n
i ) +

∑
k≤i

⌈
lni + Jk
tk

⌉
ck (5.4)

where Bi is the blocking time, which is the longest time that any lower priority message

can occupy the bus while message Mi is queued, is given by

Bi = max
k>i

(ck). (5.5)

The worst case overhead caused by the error recovery mechanism that can occur for a

given time interval is,

Ei(li) =
(

31τbit + max
k≥i

(ck)
)
F (li) (5.6)

where there can be 31 overhead bits for error signaling, and τbit is the transmission time of a
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single bit (determined by the bus speed). F (li) is a step function that yields the maximum

number of errors on the bus for a time interval and must be a monotonic non-decreasing

function. According to Broster et al. [86], the expected number of errors for the fault model

in an aggressive environment is 30 faults per seconds.

The queuing delay wi is composed of two elements: Bi, the blocking time as given in

Equation 5.5, and Ii, the interference time, which is the longest time that all higher priority

messages can occupy the bus before the message i is finally transmitted, given by

Ii =
∑
k<i

⌈
wi + Jk + τbit

tk

⌉
ck. (5.7)

Therefore, the queuing delay wi is given by:

wi = Bi + Ii (5.8)

The worst case queuing delay wi given an error model to account for random errors on

the bus is determined by calculating the delay for each of the Qi instances and is given by

the following recurrence relation:

wn+1
i (q) = Bi + E(wni + ci) + qci + Ii (5.9)

with starting value w0
i (q) = Bi + qci and terminating when wn+1

i (q) = wni (q). This analysis

adds a degree of pessimism as it includes the 3-bit inter-frame space in the computed

queuing delay, which can be removed by subtracting 3τbit from the calculated response

time values.

5.2 Real-Time Specification-Based IDS Design

Messages within a CAN bus are expected to be schedulable according to some real-time

model. We do not expect to know the actual model or its parameters for a given bus, but
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instead we estimate parameters for the RTA-based model described earlier and use it as

the specification. Bounded parameter estimates are derived from observations of the CAN

bus activity by calculating upper and lower bounds for each message’s period (inter-arrival

time). These parameters are fed into the IDS, which monitors the network patterns to

detect any deviation from the expected specification of the normal behavior. When an

instance of a message is transmitted on the bus, the IDS validates message completion

time by calculating an interval of possible values that bounds the completion time of a

valid message. This calculation relies on the learned parameters and the RTA model as a

specification, and on the history of observations of messages that have been transmitted on

the bus. The bus message history contains each message’s priority, transmission time, and

the data payload since the last bus idle time. History is necessary to account for blocking

and interference factors that delay the time between a message instance release and its

transmission.

Expected regularity of messages in the CAN bus motivates a supervised learning ap-

proach to create the specification-based IDS. Supervised learning uses training and detec-

tion phases. In the training phase, the IDS collects CAN traces that represent the normal

behavior of the network and extracts real-time parameters as the features that compose

the specification. In the detection phase, the behavior of each message observed on the bus

is checked whether or not it conforms with the specification. In our current analysis we

restrict to checking only the periodic and sporadic messages, since most of the messages in

the CAN bus are repeated regularly.

Before transmitting on the bus, messages go through the steps of message release, queu-

ing for transmission, arbitration, and finally transmission. The process involving a message

release includes the preparation and storage in the software queue, which is considered

part of the computation time of the node sending the message. A message release time is

the time instant the message is ready to be written into the priority-based transmission

buffer queue. When a message is released it is written to an available transmission buffer,

or if there is no available transmission buffer it is stored in the host controller (CPU)
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Figure 5.1: CAN Message Transmission States.

priority-based software queue until a buffer is available for writing it. Once written to

the transmission buffer, the message is ready for transmission. In the transmission buffer,

messages go through an arbitration process, and the message with the highest priority gets

to transmit in the bus.

Using the available information of the message timestamp, we reconstruct the message

release time as illustrated in Figure 5.1 by tracing back the process of release to transmis-

sion. We use this reconstruction for conjecturing the real-time parameters used to detect

abnormal behavior.

The key to SAIDuCANT is that the release time is governed by only a few parameters

of the real-time model, namely the period (inter-arrival) and release jitter, if any. The

release time is not however observable, but the time at which the message transmits is seen

on the bus and is bounded. The lower bound on the timestamp of a completed message is

based on the release time plus the message’s transmission time. The upper bound is based

on the release time plus the message’s worst case response time. The main challenge we

face is extracting the parameters of the timing model to determine these bounds.
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In the remainder of this section, we present the design of SAIDuCANT starting with

the description of the method used to extract real-time model parameters from observa-

tions of CAN bus messages before explaining the anomaly detection algorithm using those

parameters that underlies the IDS.

5.2.1 Timing Model Extraction

The exact timing model and its parameters, especially precise message periods, are

difficult to obtain—they are not normally disclosed by manufacturers. Thus, we assume

an RTA-based model and derive the real-time parameters for it from observations of the

CAN bus messages. Algorithm 5.1 infers bounds at which the period of each message

could occur by reconstructing the steps the message will go through before transmission.

These bounds are derived using the analysis described in Chapter 2 applied to information

available globally on the CAN. The algorithm extracts for each distinct message Mi a

bounded period estimate, fi,min, fi,max, and the transmission time ci.

Algorithm 5.1 takes as input a CAN log and message ID i. It returns the estimate t̃i of

the period by iteratively calculating upper and lower bounds on the release and inter-arrival

times of successive message instances. The release time of the first message instance of a

given message cannot be inferred directly, because the system state prior to the start of

the log is unknown; indeed, the release of the first instance may occur prior to the start

of the log. Thus, the first instance of each message is ignored. In line 4, the algorithm

scans backward to find the timestamp of the previous message with lower priority or the

time the bus is in an idle state. We are uncertain of the release time of Mi,k, which may

have occurred at any point between the first message with lower priority that could have

blocked it or an idle bus, and until the end of the intervening messages of higher priority

that may have interfered with transmission. Thus, the algorithm pessimistically selects the

earliest and latest possible release times of the current message, denoted Lcur and Hcur.

To construct a bounds on the period, the algorithm subtracts the latest and earliest

release of the previous instance of the same message from the earliest and latest release
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Algorithm 5.1 Estimate the period and release jitter of a message Mi given a partial Log
and ID i.

1: function DerivePeriodicParameters(Log, i)
2: fi,min, fi,max ← 0,∞
3: for Mi,k ∈ Log, k ≥ 1 do
4: el,m ← FindPreviousTimestamp()
5: Lcur ← el,m − cl,m
6: Hcur ← ei,k − ci,k
7: if k > 2 then
8: ∆L ← Lcur −Hpast

9: ∆H ← Hcur − Lpast
10: if ∆L > fi,min and ∆H < fi,max then
11: fi,min, fi,max ← ∆L,∆H

12: end if
13: end if
14: Lpast, Hpast ← Lcur, Hcur

15: end for
16: t̃i = fi,min
17: Ji = fi,max − fi,min
18: return (t̃i, Ji)
19: end function

of the current instance, respectively, to obtain ∆L and ∆H . These ∆ values represent the

smallest and largest possible inter-arrival time between the previous and current instance

of the message. The fi,min and fi,max are, eventually, the ∆L and ∆H that are closest to

each other.

The final value of fi,min is taken as the estimated period t̃i, which, assuming a constant

actual period and non-negative release jitter, is no greater than the actual period. The

release jitter is the difference between fi,max and fi,min, which describes the maximum error

in the estimated P̃i because the actual period is no greater than fi,max.

5.2.2 Anomaly Detection

A message is considered anomalous if its completion time violates the acceptable inter-

val defined by the specification of its real-time parameters. We obtain the response time of
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Algorithm 5.2 Anomaly detection from timing specification.

1: function Detect(ei,k, t̃i, Ri, φi, k)
2: mints ← φi + (t̃i ∗ k)
3: maxts ← mints +Ri

4: nextmaxts ← maxts + t̃i
5: if ei,k > nextmaxts then
6: k ← k + 1
7: goto 2
8: end if
9: if ei,k < nextmints then

10: return 0 ← normal
11: end if
12: if mints ≤ ei,k ≤ maxts then
13: return 0 ← normal
14: else
15: return 1 ← anomalous
16: end if
17: end function

each message using Equation 5.1 with the estimated t̃i and Ji determined by Algorithm 5.1.

We use this response time in a supervised learning algorithm to classify messages as nor-

mal or anomalous. Algorithm 5.2 takes as input a message instance’s completion time, the

estimated period, response time, phase, and the instance count. Note that we estimate

the phase φi as ei minus ci of the first instance. Algorithm 5.2 calculates the minimum

timestamp that a message instance can assume by adding the phase to the instance mul-

tiplied by the period. The maximum timestamp represents the minimum timestamp plus

the WCRT. The algorithm classifies the message instance as normal if its actual timestamp

falls between the calculated minimum and maximum timestamps.

Figure 5.2 shows two distinct messages for Car X and Car Y with the inferred period

bounds from Algorithm 5.1. The difference between the lower and upper bound represents

the tightness in the minimum and maximum timestamp that a message can assume. There

is a variation in this tightness as seen in Figure 5.2 which is indicative of the performance

of the algorithm on the messages in a CAN bus. Car Y shows a slightly loose bound

compared to Car X. We obtain the periods upper and lower bounds for each ID that
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are within approximately 5ms of each other; thus an attacker cannot successfully inject

a message without violating the expected period of the next authentic message because

the inferred periods converges within ±2ms of the real period. Moreover, since the real

period is on the order of 10, 100, or 1000ms, an adversary with a data injection attack is

constrained to inject messages within the difference between the derived lower and upper

bound of the message which cannot be more than one message every 100 or 1000 messages

without being detected.
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Figure 5.2: Variation of inferred lower and upper bound of the period for consecutive
instances of different message IDs.

Furthermore, because CAN bus follows a specification and calculating the bounds of
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the messages in real time guarantees the schedulability of messages in the network, the

primary pattern of messages transmitted in the bus is disrupted when there is an injection

attack. With our approach, the tightness on the estimate of the period makes a message

injection impractical.

For a periodic or sporadic message, if a message does not arrive by the maximum time

of its periodicity or inter-arrival time, the message is said to be a dropped or lost message.

When we have a lost message, our algorithm considers the maximum timestamp of the

next instance, that is, the maximum timestamp of the current message plus the message

period or inter-arrival time, to determine the instance of the following message for proper

classification. A message is said to be delayed if it is received later than its expected period

or inter-arrival time. Our detection algorithm does not label delayed messages anomalous

if the message finishes its transmission before the minimum timestamp of its next instance.

5.2.3 Example

Consider the schedule in Figure 5.3, composed of messages M1(0, 0.27, 0.675), M2(0,

0.27, 0.945), and M3(0, 0.27, 1.89) with M1 having the highest priority (of 1) and M3

having the least priority (of 3), and with time in milliseconds. The busy period starts at

time t = 0 with the release of all the first message instances, M1,1,M2,1,M3,1, and M1,1

wins arbitration. Thus, M1,1 causes interference for both M2,1 and M3,1. At t = 0.675, M1

releases instance M1,2 while M3,1 is in transmission, which therefore blocks M1,2 until M3,1

finishes transmission. The bus is idle from t = 1.62 to 1.89. The embedded table shows the

corresponding log for these messages with sample data, DLC, and completion time ei,k.

To better understand how the fi,min and fi,max are calculated, consider M1. The first

instance M1,1 is ignored. For M1,2, scanning backward finds that the preceding message is of

lower priority, which implies that the release of this message occurs during or immediately

after the transmission of M3,1. Therefore, a lower bound on the release time is given

by subtracting the transmission time from the timestamp of the preceding message, i.e.,

Lcur = e3,1 − c3,1 = 0.81 − 0.27 = 0.54. The upper bound is always calculated directly
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Figure 5.3: Example of periodic message behavior. (Time in ms.)

from the message instance, e.g., Hcur = e1,2 − c1,2 = 1.08 − 0.27 = 0.81. The range

from [(e3,1 − c3,1), (e1,2 − c1,2)] = [0.54, 0.81] describes the maximal time interval that M1,2

could have spent waiting for transmission. As expected, M1,2’s actual release time 0.675 ∈

[0.54, 0.81]. Because the first instance does not calculate an upper and lower bound, the

second instance is not able to calculate a valid ∆L or ∆H , so the algorithm stops processing

this instance, stores the calculated Lcur and Hcur as Lpast and Hpast, and moves on to

M1,3. Scanning backward from M1,3 find that the previous message M2,2 has lower priority,

so Lcur = e2,2 − c2,2 = 1.35 − 0.27 = 1.08. Again, the upper bound is calculated as

Hcur = e1,3 − c1,3 = 1.62 − 0.27 = 1.35. Now ∆L = Lcur − Hpast = 1.08 − 0.81 = 0.27

and ∆H = Hcur − Lpast = 1.35 − 0.54 = 0.81. These calculated bounds are used as

the first estimates for the period, so f1,min = 0.27 and f1,max = 0.81 after processing

M1,3. The actual period of M1 = 0.675 ∈ [0.27, 0.81]. For M1,4, the algorithm calculates

∆L = 1.89− 1.35 = 0.54 and ∆H = 2.16− 1.08 = 1.08. Although the new ∆L improves on

f1,min, the new ∆H is worse than the f1,max so the bounds are not updated. As the log ends

with no more instance of M1, its estimated period and jitter are t̃1 = 0.27 and J1 = 0.81.

Table 5.2 shows the transmission time of the example message schedule.
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Table 5.2: Sample message transmission log

Mi,k DLC Data ei,k
M1,1 8 FF FE 7E F0 86 0B 30 00 0.27
M2,1 8 6F 9F 6F 94 0F A0 EE 0B 0.54
M3,1 8 01 F4 02 4D 04 18 82 B6 0.81
M1,2 8 FF FE 7E F0 86 0B 30 00 1.08
M2,2 8 6F 9F 6F 94 0F A0 EE 0B 1.35
M1,3 8 FF FE 7E F0 86 0B 30 00 1.62
M2,3 8 6F 9F 6F 94 0F A0 EE 0B 2.16
M1,4 8 FF FE 7E F0 86 0B 30 00 2.43
M3,2 8 01 F4 02 4D 04 18 82 B6 2.70

5.3 Experimental Setup

We illustrate and evaluate SAIDuCANT using data we collected and with published

datasets. We collected data from two different sedan vehicles, Car X and Car Y, which

are the same make but different model and year. The vehicles are operated in a controlled

setting on a dynamometer in the Cyber Security Laboratory of the National Transporta-

tion Research Center managed by Oak Ridge National Lab and CAN log data are collected

through the OBD-II ports. The vehicles have a medium speed CAN bus and high speed

CAN bus. Initial test data was recorded for the vehicle state comprising ignition key turn

(handbrake on), acceleration, maintaining a constant speed, braking, and reverse. We

performed attacks by injecting malicious messages at high frequency to override normal

vehicle operations. These malicious messages were constructed by spoofing legitimate mes-

sages transmitting on the bus. We identified message IDs such as wheel speed and backup

light while observing the recorded normal data to construct the attack. Messages are in-

jected at different intervals through the OBD-II port for about 60 seconds at a frequency

higher than the observed to cause a malfunction in the vehicle.

Furthermore, we evaluated the performance of SAIDuCANT using CAN data made
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available for research purposes1. The dataset contains a standard vehicle operation and

attack datasets comprising fuzzy, RPM spoofing, gear spoofing, and DoS attacks. These

datasets were recorded from a real vehicle through the OBD-II port. The ground truth

about the dataset is known as it contains information about regular and injected messages.

For the gear and RPM spoofing attacks, the respective IDs are injected every 1 millisecond.

The fuzzy attack dataset contains randomly injected messages IDs performed every 0.5

milliseconds while DoS attack dataset contains attacks where the dominant message ID

0000 is injected every 0.3 milliseconds to disrupt the vehicle functions.

We observe messages that appear just once throughout a log. These messages cannot

be strictly classified as periodic, sporadic, or aperiodic because there is no other message

to compare them or to extract features from them. Moreover, they appeared mostly at the

beginning of the log, in which case we have classified them as messages corresponding to

the initial startup of the bus. We have ignored these one-time messages in our results.

To evaluate IDS performance we use classifier accuracy. The performance is measured

by collecting the number of true negatives (TN), true positives (TP), false negatives (FN),

and false positives (FP) and calculating the accuracy, recall, precision, and the F1 Score.

TP and FP rates usually sum to 1, while TN and TP also sum to 1.

1. True positive (TP): instances the IDS correctly labeled attack operations as anoma-

lous.

2. True negative (TN): instances the IDS correctly labeled normal operations as non-

anomalous.

3. False positive (FP): instances the IDS incorrectly labeled normal operations as anoma-

lous.

4. False negative (FN): instances the IDS incorrectly labeled attack operations as non-

anomalous.

1https://sites.google.com/a/hksecurity.net/ocslab/Datasets/CAN-intrusion-dataset
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5. Precision measures the degree to which the IDS correctly labeled the attack opera-

tions as anomalous.

Precision =
TP

TP + FP
(5.10)

6. Recall measures the rate of attack operations which the IDS labeled correctly as

anomalous.

Recall =
TP

TP + FN
(5.11)

7. F1 Score is the weighted harmonic mean of precision and recall. We use the F1

Score as an index for testing accuracy.

F1Score = 2 · Precision ·Recall
Precision+Recall

(5.12)

8. Accuracy is the percentage of the correctly labeled instances divided by all the data

set.

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(5.13)

True positives represent anomalous data that was correctly classified while false nega-

tives are cases our model incorrectly labeled as normal. Precision and recall describe how

well our classification algorithm distinguishes between injected anomalous data and the

standard bus operation.

We also introduce two new metrics for characterizing performance of an automotive

IDS, the time to detection (TTD) and false positives before attack (FPBA), that we define

as

TTD = eD − eA (5.14)

FPBA =
∑

m∈Log[0:eA]

isFP (m) (5.15)
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where eD and eA denote the detection time and completion time of the first instance of an

injected attack message, respectively, Log[x : y] is a subsequence of messages observed on

the network from time x until y, and isFP (m) is a binary valued function that returns 1 if

message m is a false positive, and 0 otherwise. The TTD measures the time after an attack

happens before it is detected, hence it is a latency indicator of IDS performance. FPBA

captures the classifier performance prior to the existence of an attack.

These metrics are introduced to measure the performance of our detection algorithm.

Since we are dealing with a safety-critical system, the false alarm rate before a real attack

needs to be measured since such an alarm can negatively impact system performance. The

significance of early and timely detection of attacks in the vehicular network can better

position proper response before safety is compromised.

5.4 Experiments

For the experiments we use message traces recorded from the high-speed bus of the test

vehicles and the open-source data. We conducted four different experiments.

5.4.1 Experiment 1: All normal data

This experiment evaluates SAIDuCANT in absence of attacks. First, we recorded data

for six representative datasets on Car X and five on Car Y. Each dataset is composed of

data recorded for about 120 seconds of standard vehicle operations, i.e., normal data. One

of the datasets (training dataset) is used to extract the timing model specifications of each

message on the bus by applying Algorithm 5.1. The other datasets (test datasets) are used

to validate the model by invoking Algorithm 5.2 for every message instance. A message

instance is classified as anomalous if 1.) The message ID was not recorded during training,

or 2.) Algorithm 5.2 returns anomalous.

For this experiment, which does not have attack data, any anomalous labels are false

positives and normal labels are true negatives. Thus, the accuracy is simply the ratio of
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Table 5.3: Outcome of SAIDuCANT on normal data

Cars Messages TN FP Accuracy

Car X

486091 485476 615 0.9987
323942 323673 269 0.9992
241157 241061 96 0.9996
246741 246650 91 0.9996
239107 239047 60 0.9997

Car Y

345781 345451 330 0.9990
327604 327310 294 0.9991
381907 381383 524 0.9986
337575 337086 489 0.9986

normal labels to total messages. Table 5.3 shows the results of SAIDuCANT performance

measured by calculating the classifier accuracy of Algorithm 5.2 over each test dataset. The

message column indicates the total number of message instances present in each dataset.

We observe false positives due to the limitations of Algorithm 5.2 that are discussed in

Section 5.4.6.

We observe periodic messages with the same ID but different phases. These messages

exhibit the same behavior as a regular message but share the same ID and have the same

periodic behavior. This may indicate that some messages with the same ID originate

at different ECUs. Our current detection algorithm is unable to classify these messages

because only one phase is defined for the ID, i.e., we have assumed one message per ID.

Messages from other sources are categorized as anomalous in the analysis, which constitutes

about 52 percent (≈ 52%) of the number of false positives. Precision and recall are not

calculated for this experiment because the dataset does not contain any attack messages

which implies that there is only one relevant instance or data point of interest in each

dataset.

71



5.4.2 Experiment 2: Real Attack

This experiment considers the algorithm performance on a real attack dataset involving

the vehicle backup light for Car X. We performed a message injection attack that activates

the backup light every 700 microseconds. The injections are made in intervals of length

15 seconds, with 15 seconds of non-injected messages in between. Thus, the attack data

contains a mix of normal and attack message instances during injection intervals [15, 30]

and [45, 60] seconds, and normal message instances outside those intervals.

In this experiment, due to infrastructure limitations, we are not certain which logged

messages are from our injection and which are from the vehicle’s normal operations. Thus,

we cannot calculate metrics of classifier performance for this experiment. In this experiment

we injected 2,845 messages to Car X as it was being driven on the dynamometer. The

attack log contains 154,564 message instances, with 3,767 of them labeled anomalous by

Algorithm 5.2. Although we cannot distinguish our injected messages from authentic ones

in the log, we can say that we did not observe any anomalous labels for message instances

of the injected message ID outside of the injection intervals, so we have confidence that the

injected messages are, mostly, correctly labeled anomalous.

5.4.3 Experiment 3: Synthetic Attacks

Here, we validate the performance of SAIDuCANT with synthetic attacks. We simulate

message injection attacks on the test datasets by injecting a particular ID 2 to 3 times faster

when an idle bus time is observed. This attack is achieved by recreating the expected

message trace and injecting message IDs during the idle time. The idle time is used

to ensure that the simulated attacks are accurately spaced to avoid any overlap in the

message timestamp. The injected message is not altered, thus maintaining the same field

properties as a normal message but with a different timestamp. The timestamps of the

injected messages are set to fit within the limit of the idle time.

In this experiment, we have both attack and benign messages, and we know the ground
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truth because we know which messages we injected. Thus, we present the classification FP,

TP, FN, and TN. Table 5.4 shows the classifier performance of Algorithm 5.2 for the syn-

thetically generated attack data. The message column shows the total number of messages

in each dataset. The predictive value of our positive test indicates an approximation of 90

to 99 percent accuracy. An average 91 percent recall indicates that the algorithm correctly

labels the injected anomalous data.

Table 5.4: Outcome of SAIDuCANT with synthetic data injection algorithm

Cars Messages TN FP FN TP Accuracy Precision Recall F1 Score TTD FPBA

Car X

493042 485467 624 620 6331 0.9975 0.9103 0.9108 0.9105 0 0
325766 323666 276 152 1672 0.9987 0.8583 0.9167 0.8865 0 0
243698 241056 101 95 2446 0.9992 0.9603 0.9626 0.9615 0 5
248428 246650 91 308 1379 0.9984 0.9381 0.8174 0.8736 0 7
241739 239047 60 208 2424 0.9989 0.9758 0.9210 0.9476 0 3

Car Y

346930 345451 330 130 1019 0.9987 0.7554 0.8869 0.8159 0 0
327604 327310 294 122 2433 0.9987 0.8922 0.9523 0.9212 0 0
381907 381383 524 230 1933 0.9980 0.7867 0.8937 0.8368 0 2
338869 337086 489 1 1293 0.9986 0.7256 0.9992 0.8407 0 51

5.4.4 Experiment 4: Real Attacks (open-source data)

In this experiment, we consider the algorithm performance on real open-source attack

data from Hacking and Countermeasure Research Lab2. Table 5.5 shows the classifier

performance on the datasets. For the number of false positives in spoofing the gear dataset,

99.72% is the injected ID, and 99.91% in the case of RPM dataset. We found that before

the start of the message injection attack, SAIDuCANT detects no FP in both datasets.

This implies that when the IDs are being injected, their periodicity changed and their

transmission times become irregular. These irregularities in the periods contribute to the

regular IDs missing their expected deadlines, which resulted in many false negatives. As

with the false positives, the injected IDs for the RPM and gear constitute 100 percent of

the false negatives. For the fuzzy attack dataset, the false positives and false negatives are

2https://sites.google.com/a/hksecurity.net/ocslab/Datasets/CAN-intrusion-dataset
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Table 5.5: Outcome of SAIDuCANT with real attack dataset (open source)

Attacks Messages TN FP FN TP Accuracy Precision Recall F1 Score TTD FPBA

Gear Spoofing 4,443,142 499,934 674,784 97,318 3,171,105 0.8262 0.8245 0.9702 0.8915 10 0
RPM Spoofing 4,621,702 534,974 798,213 119,923 3,177,591 0.8033 0.8010 0.9636 0.8748 9 0
Fuzzy 3,838,860 479,781 455,447 12,066 2,891,565 0.8782 0.8639 0.9958 0.9252 0 1
DoS Attack 3,665,771 587,521 70,475 0 3,007,774 0.9808 0.9771 1.0 0.9884 0 0

distributed across the injected IDs while for the DoS attack dataset there were zero false

negatives with a minimum number of false positives (< 0.003%) in the whole dataset.

5.4.5 Comparison with other detection approaches

Using the same dataset from 5.4.4, we compare SAIDuCANT with interval and fre-

quency detection approaches. In the interval detection approach, the IDS reads the normal

can frames to build a timing model for each message ID interval. The IDS checks each

message ID and calculates the average time interval between subsequent messages in the

attack-free dataset. The generated intervals are then used against the attack datasets. If

an interval in the attack datasets is less than half of the calculated average interval for the

message ID, the IDS alerts for anomalous behavior. In the frequency detection approach,

the frequency of each message ID is calculated from the attack-free dataset. Frequency

is the rate of messages observed in a set time interval. When the frequency of messages

increases by more than twice the normal value, an anomaly is indicated. The frequency-

based IDS scans datasets to calculate the frequency of message for each ID. If the frequency

of messages deviates at a rate greater than two times normal, the IDS indicate an anomaly

for said message ID. For this work, we used a time interval of one second.

Table 5.6 shows the performance of SAIDuCANT algorithm compared to detection

algorithms using message features such as interval and frequency. The table clearly shows

that our algorithm performs better in terms of the time it takes to detect attacks, and

the number of false positive before attack injections started compared to other approaches.

SAIDuCANT provides a significantly higher detection ratio for well-crafted attacks like

DoS and fuzzy attacks compared to the other methods, and the test of accuracy (F1 Score)
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Table 5.6: Comparison of the SAIDuCANT with interval and frequency detection approach

Attacks
Detection Approach

Interval Frequency SAIDuCANT
Recall TTD FPBA F1 Score Recall TTD FPBA F1 Score Recall TTD FPBA F1 Score

Gear Spoofing 0.9367 2 190 0.7185 0.8739 1585 793 0.8739 0.9702 10 0 0.8915
RPM Spoofing 0.9528 0 144 0.7332 0.9618 79 160 0.9231 0.9636 9 0 0.8748

Fuzzy 0.9787 0 133 0.7708 0.8845 133 65 0.8847 0.9958 0 1 0.9252
DoS Attack 0.9998 0 139 0.8176 0.9032 204 356 0.9032 1 0 0 0.9884

for such attacks with the SAIDuCANT algorithm is over 90 percent compared to 80 percent

for interval and approximately 90 percent for frequency detection approaches respectively.

5.4.6 Discussion

Due to the stochastic nature of driving, we obtained different results for each test

dataset. The variability in different driving modes is one of the causes of the disparities in

the results. Some of the data are recorded while the vehicles are in an accessory mode, drive

to accelerate, drive to decelerate, accelerate in reverse, decelerate in reverse, maintaining

a constant speed and braking operations. Also, the driver’s actions and the underlying

driving operations are contributing factors to the difference in results.

Most of the false positives in the result of the normal data can be reduced by manually

tuning the upper bound of some of the IDs with arbitrary large periods (IDs with periodicity

in the order of seconds) by 0.05ms without increasing the attacker’s chance of successful

data injection. Applying this tuning number to the entire set of IDs will cause overfitting

which in turn increases the chance of some injected IDs being not detected.

Presently, our detection algorithm can only detect periodic and sporadic messages but

not aperiodic messages and message IDs with several message instances per period. How-

ever, most of the significant information relating to the control of the safety systems in

vehicles are transmitted periodically and sporadically with a single message instance from

a single source ECU.
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5.5 Summary

In summary, we present SAIDuCANT an approach for detecting intrusions in in-vehicle

networks using a specification-based IDS. The specification is developed through obser-

vations of message timing and worst case response time analysis of the CAN bus. We

developed an efficient and straightforward algorithm to estimate the real-time parameters

of the RTA-based model online in a black box approach. A key strength of this approach

is that the response time analysis includes the failure and error model of the CAN bus. We

have evaluated SAIDuCANT experimentally on datasets generated from the high-speed

CAN busses of two different car models and open-source vehicle data. The IDS can detect

message injection attacks on the CAN bus with high accuracy and low false positive rates

in real time. Compared to other detection approaches, SAIDuCANT shows improved per-

formance despite its simplicity. The weighted average of precision and recall (F1 Score)

shows an improvement over other approaches while reducing detection delay. Furthermore,

we introduced two new metrics, TTD and FPBA to measure the performance of an IDS.

Both TTD and FPBA for SAIDuCANT yields better and consistent performance across

various attack scenarios as compared to other detection algorithms. SAIDuCANT can be

easily implemented on most vehicle’s gateway ECU with limited computing power.
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Chapter 6

Reboot-Based Intrusion Prevention

Approach

In this chapter, we describe the framework for reboot-based recovery approach which

denotes the reactive feature of our fail-operational algorithm. The chapter highlights the

steps that a compromised ECU will have to undergo to recover from anomalous behavior.

The chapter introduces the fusion of the developed IDS and the recovery approach aimed

at detecting and thwarting advanced threats and attacks such as multistep attacks and

those using sophisticated toolset against the automotive network. We demonstrate the

effectiveness of this approach on a testbed and measured the performance of the designed

node in detecting injected message frames, the total recovery time to drive the compromised

node to a bus-off state (more on this in section 6.1.3) and reboot.

The network systems are subjected to problems which range from signal distortion to

component failures. Performance, reliability, and safety are crucial features of safety-critical

applications such as the automotive systems [87]. A significant challenge for designers is to

balance the requirements of safety, security, and functionality. The priority of safety is the

passenger’s well-being, and to ensure safety, even in the worst of conditions, certain features

of the vehicle must remain operational such as airbags and collision avoidance systems.

This implies that the safety of critical features and operation have priority over security.

However, what follows in situations where one of these safety features is compromised or

is the target of an attack? The challenge lies in keeping safety features operational while

limiting them from compromising the rest of the vehicular features. To ensure the security

of the vehicle some features and operations may need to be limited or be brought down

77



into a degraded state, while the vehicular systems maintain operational safety. This implies

that the safety of critical features and operation have priority over security.

In this chapter, we present a reboot-based intrusion-tolerance approach for security

covering arbitrary faults of network nodes that are under attack and also considering the

effect of attack propagation in the CAN bus. Presently, our focus is on message spoofing

attacks that impersonate or masquerade as a functional ECU on the bus. The reboot-based

recovery is a practical recovery method for ECUs that have been compromised by a remote

adversary. The goal of this approach is to prevent adversaries from propagating attack

messages further into the network and control the safety-critical CAN bus operations. The

high-level overview of the proposed recovery method is illustrated in Figure 6.1.

The contributions of this chapter are:

1. A practical approach for blocking and terminating malicious data injection from trans-

mitting and propagating on the CAN bus.

2. A reliability analysis that evaluates the proposed approach and quantifies its resiliency

to malicious attack.

3. An approach demonstrating how bus-off state is beneficial to recovery for nodes with

remotely accessible interfaces transmitting on the bus.

6.1 Background

This section introduces the high-level description of our recovery approach, fault-tolerant

technique and how faults are handled in automotive in-vehicle networks. We propose a

method to detect and counter unauthorized message from transmitting on the CAN bus.

In this approach, we deploy a CAN node called the detector that check the transmitted

data and operation of the bus. The detector consists of the IDS (SAIDuCANT), CAN

controller and transceiver that can invalidate or destroy unauthorized data frames through

overwriting of the error frame in real-time. SAIDuCANT monitors the release of messages
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Figure 6.1: Process steps of the proposed recovery approach
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as received by the CAN controller and then detects violations of the timing properties as

stated in the message lookup table. When a message violates its timing specifications,

and it is flagged anomalous by the detector, an error frame is transmitted to override and

immediately invalidate the message before it can cause damages on the bus.

6.1.1 Fault-Tolerance

Fault-tolerance is a feature that enables a system to continue execution in the presence

of a defect or fault. Systems that exhibit this feature is classified as either highly available

or highly reliable system. Availability is the capability of a system to achieve its expected

functions when it is required while reliability is the ability of a system to function under

stated conditions for a specified period. Fault-tolerance can be implemented with software

embedded in hardware or a combination of both, and it is a property that is important

to many applications such as automotive, aerospace and power grid [88]. Fault tolerance

is required in automotive systems because of the safety critical nature of their operations.

Fault-tolerance may require more systems resources to achieve but protects against a more

extensive array of faults than fault avoidance.

Typically, fault-tolerance is achieved by adding redundancy to the system, and the

system is redundantly protected via replication [89]. Replication is a type of redundant

fault tolerance that involves placing identical copies of a component and a switch to ensure

that only one is active at a time. Fault-tolerance that is based on redundancy to detect

and mask errors can reveal significant problems in the context of real-time dynamically

reconfigurable systems [90].

Software fault tolerance is the ability to use software to detect and recover from faults

arising or that has occurred in a software or hardware of a system. It requires dynamic

configuration of tasks at runtime which can compromise the execution predictability [91].

To design a system that is fault-tolerant, the system processes and how failure occurs needs

to be fully understood. A fault is a defect that causes a noticeable error in the system, and

a failure occurs when the error makes the system behave in a way that is inconsistent with
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the specification [88].

With the increase in electronic components and software in today’s automobile, fault

tolerance has become a design requirement and it is important to maintain the functionality

of system component despite failures and errors. This need arises from the fact that failure

of electronic components generates visible changes in the behavior of the system, unlike

mechanical components that degrade gracefully in the event of failure. This failure can also

result in a secondary failure leaving the system at risk of cascading failures.

A failure is said to have a cascading effect when it spreads across a series of intercon-

nected systems. Failure of a component can result in a domino effect by propagating itself

to the point of an overall systems failure. The identification and recovery from such failure

are paramount in automotive safety-critical systems and implementing a fault detection,

isolation, and recovery (FDIR) approach can improve the resiliency of the automotive bus

system.

When an error is detected in the system, the damage must be assessed on the system

state while actions are taken in keeping the error from propagating to other sections of

the system to prevent further damage. Once the error is under control, error recovery

techniques are applied.

6.1.2 CAN Error Recovery

CAN protocol implements error handling feature for nodes transmitting on the bus in

order to monitor the health of the bus. This error handling feature is essential for fault-

tolerance, which is vital for maintaining the functionality of system components despite

failures and errors. This need arises from the fact that the failure of electronic components

generates visible changes in the behavior of the system, unlike mechanical components

that degrade gracefully in the event of failure. This failure can also result in a secondary

failure leaving the system at risk of a cascading failure. In the CAN protocol, this feature

allows nodes on the network to exercise actions like raising error flags, and retransmitting

or discarding frames when an error is detected. The CAN protocol defines the following
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error types for error handling [92]:

1. Bit error: Nodes transmitting frames on the bus also monitor the bus and compare

the bit level to be transmitted with that monitored on the bus. A bit error occurs if

these bits are different except during message arbitration.

2. Stuff error: A stuff error occurs when six consecutive equal bits is observed in the

data field which should have been coded by the method of bit stuffing.

3. Cyclic Redundancy Check (CRC) error: A CRC error is raised when the CRC

received for a message frame is different from the one calculated by the receiver for

the frame.

4. Form error: A form error occurs when a fixed-form bit field of a message frame

contains illegal bits.

5. Acknowledgment (ACK) error: ACK error is raised when a transmitting node

receives no dominant bit issued by a receiver in the ACK slot.

When a node detects an error on the bus, it flags the corrupted message and transmits

an error flag. If the node is in error active state, an active error flag is transmitted,

otherwise a passive error flag is transmitted. The transmission of such a message will abort

and attempt to retransmit at the next bus idle time.

Each node implements the two error counters transmit error counter (TEC) and receive

error counter (REC). These counters start at zero, and they increment when an error is

observed or decrement whenever the controller successfully transmits or receives a message

according to the predefined rules specified by the CAN protocol. When an error is detected

at the sending node, a sending node TEC is increased by 8, and the other nodes’ RECs

are increased by 1. When an error is detected at a receiving node, the receiver node REC

is increased by 8. For a successfully transmitted message, the TEC and RECs of both the

sending and the receiving nodes are decreased by 1, respectively.
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Figure 6.2: Flowchart of CAN Bus error Counter

The values of the TEC and the REC affect the error handling of the CAN bus as nodes

change their error status. The transitions between the error states are shown in Figure 6.2.

In error active state, the node is said to be in a healthy state when the TEC ≤ 127 and

REC ≤ 127. A node will transition into the error passive state when the TEC > 127

or the REC > 127. A node in this state can partake in the bus communication but can

only transmit a passive error flag when an error is detected. The error flag in this state

is changed to 6 consecutive recessive bits to avoid any impacts on the bus operation and

must wait before initiating further transmission. In general, a value of an error count that

is higher than 96 indicates an extremely disturbed bus.
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6.1.3 CAN Bus-Off State

The bus-off state is an error state of the CAN controller set by the transmitting node

when the TEC exceeds 255. In this state, the node is switched off from the bus and can

not transmit or acknowledge frames compulsorily. This error state is usually a result of

critical hardware or software problems. A node in a bus-off state is not allowed to influence

the bus operation and can only rejoin the network by transitioning to error active when its

error counters are set to zero after monitoring 128 occurrences of 11 consecutive recessive

bits on the bus.

6.2 Related Work

Kurachi et al. [93] proposed a centralized authentication system for preventing malicious

message transmission in CAN using the error frame. The authors used a single centralized

ECU to verify the MAC of all CAN messages and send out an error frame if the MAC

attached is invalid. Their method requires a modification to all ECUs to be able to share

keys and generate MACs when messages are transmitted. This approach will be very costly

to implement and deploy for modern vehicles that may contain over 100 ECUs. Since ECUs

need software modification to execute the node authentication and key exchange, the ECUs

might not have enough computational power or memory to execute such an algorithm.

Matsumoto et al. [94] proposed an approach for preventing unauthorized message trans-

mission in CAN bus using the error frame. In their approach, each ECU detects unautho-

rized data transmission using its message ID by monitoring the data on the bus. The

ECU transmits an error frame to override the message if it detects that the message is

unauthorized before it finishes transmission.

Dagan and Wool [95] proposed the Parrot system to mitigate spoofing attacks in CAN

bus. In their approach, the Parrot defense launches a counter-attack of carefully crafted

collisions to damage the spoof message and drive the compromised ECU into a bus-off
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state. This solution can be implemented as a software patch to each ECU.

Abbott-McCune and Shay [96] proposed an intrusion prevention system that monitors

the CAN bus to detect invalid messages by matching the message start-of-frame field with

the one preprogrammed in the ECUs connected to the CAN bus. When a match is detected

while the connected ECU is not transmitting, the ECU identifies a replay attack and send

an alert to the detector to signal a replay attack. In this approach, each segment of the

network requires a device that can be implemented in the gateway to monitor the network

activities and compare the message IDs transmitted to the valid ID then flag non-matching

ones as anomalous.

Souma et al. [97] proposed a countermeasure to bus-off attacks in the CAN bus. The

counter-attack method transmits a single burst of consecutive dominant bits to disable the

adversary at once, which may cause unintended negative side effects on the CAN bus as it

does not conform to CAN specifications.

The prior approaches require modification to the software stack interfacing with CAN

controllers, which implies modified software and hardware for each ECU. Our approach is

similar in nature, but we do not require the authentic ECU to act as part of the defense

scheme. Although an authentic ECU is potentially driven to a bus-off state with the

compromised node, because of the remote attack surface considered in this work and our

assumption that the malicious and the victim nodes are not communicating on the same

bus, the error frames that drive the attacker to bus-off will not be visible to the victim

(spoofed) node.

6.3 Intrusion Prevention System Design

In this section, we present the general system model of the proposed approach as well

as the assumptions that have been made in designing the system.
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6.3.1 Assumptions

We present a reboot-based recovery approach covering arbitrary faults of network nodes

that are under attacks and also considering the effect of fault propagation in the network.

We make the following assumptions in designing our approach:

1. all CAN controllers are trustworthy, i.e., the hardware controller behaves correctly

with respect to the CAN protocol.

2. safety-critical ECUs are connected to each other through the CAN bus.

3. the ECU that sends the authentic message with ID matching the spoofed message is

on a separate bus from the compromised ECU sending the spoof message.

4. ECUs attached to both the CAN bus and a remotely accessible interface are config-

ured to reboot when put in bus-off state.

Currently, it is not typical for ECUs connected to the CAN bus with remotely accessible

interfaces to have reboot capability when in a bus-off state. Our proposed approach may

require the use of controllers that have this particular feature built-in, and it is in the

manufacturer’s purview to decide whether or not to include this feature.

6.3.2 ECU Architecture and General System Model

The architecture of a typical ECU node contains a hardware CAN controller and

transceiver that interfaces the ECU software to the CAN bus—the controller manages

digital bits in frames, and the transceiver implements the physical bus access including bus

arbitration. We add IPS logic in parallel to the CAN controller that processes commands

and may generate CAN messages as depicted in Figure 6.3. This logic monitors the mes-

sage frame at the controller level and contains a hardware implementation of an IDS and

our proposed recovery approach, which together comprise a CAN bus IPS.
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Figure 6.3: ECU Architecture

The primary functionality of the IPS logic is to monitor data transfers of the bus to

protect against unauthorized access. The IPS has two operating modes: monitor and react.

In the monitoring mode, the IDS component observes the bus operations while receiving

message frames without meddling on the bus activities. When the IDS detects an attack,

the IPS enters a reactive mode and sends an error frame to defend the system.

6.3.3 Detectors

Our proposed IPS can use any kind of IDS satisfying the requirement that it can detect

an attack message before that message finishes transmission on the bus. We encapsulate

such an IDS in a detector node, which is responsible for triggering the IPS mechanism. In

this work, we investigate three IDS algorithms for implementation as a detector: message

interval [38], message frequency [35], and message response time analysis [83]. In the

following we briefly describe each of these.
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6.3.3.1 Message Interval IDS

Song et al. [38] describe an IDS using the interval between messages as a feature. By

examining the time interval between messages of the same ID, they evaluate how message

injection attacks affect the individual time interval of each message ID. The authors deter-

mine that the time interval is a feature capable of detecting message injection attacks in

CAN bus traffic by computing the time difference in the arrival of every new message of

the same ID transmitted on the bus, and labal a message as injected if the time interval is

shorter than the predefined normal.

The detector node operation for the message interval IDS is described in Figure 6.4a.

The controller maintains a lookup table of the message IDs, their intervals, and the trans-

mission time of the previous instance of the message. We assume the lookup table contains

the list of messages transmitting on the bus as the detector. When a new message frame is

transmitted, the IDS checks the CAN ID and computes the time interval from the arrival

time of the previous message with the same ID. If the time interval of the new message

frame is as expected, the previous transmission time of the ID is updated in the lookup

table. Else, if the calculated interval is shorter, i.e., the message frame arrives sooner than

expected, the IDS indicates the message is anomalous and transmits the error frame. By

updating the previous transmission time, the controller can compute the difference between

the received and previous frame transmission time with the stored interval.

6.3.3.2 Message Frequency IDS

Taylor et al. [35] describe an anomaly-based IDS using frequency of messages as a

feature. By analyzing the distribution rate of messages over a specified interval, it is possible

to detect anomalous messages. The authors applied a flow-based approach to estimate the

changes in the data content of the CAN bus and their frequencies, then compared them to

the historical value to detect anomalies.

Figure 6.4b shows the system flow diagram of the detector node operation of the fre-
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quency IDS. The controller maintains a lookup table of the message IDs, the window size,

and their maximum message count for each window. The inputs to the monitoring node are

the lookup table and the received message frame. The frequency of a message is the rate

of messages transmitted over a time window. For each message ID transmitted in the same

window, the detector checks if the count for the ID exceeds the maximum count. When it

does, an error frame is transmitted, else it updates the message count and continues the

check. The window size comprises the rates of all the message IDs transmitting on the bus

for a set size. When the window for the message expires, the detector resets the window

size and the message count for the IDs to capture the frequency of the messages in the new

window.

6.3.3.3 Message Response Time Analysis IDS

Olufowobi et al. [83] introduced an IDS based on estimating the real-time model pa-

rameters of a set of CAN messages and using response time analysis to derive best- and

worst-case response times for each message. These response times are then used to predict

the arrival window of periodic messages, and the IDS triggers an attack if messages arrive

too soon. An attack is detected when a message with an unknown ID is transmitted, the

release time falls outside of the acceptable range, or more than one message is received at

a period or in an interval.

Figure 6.4c shows the system flow diagram of the detector node operation for the mes-

sage response time analysis IDS. The controller maintains a lookup table of message IDs,

their earliest and latest release times of the next frame, and their period or inter-arrival

time. We assume that the lookup table contains the list of all messages that transmit on

the same bus as the detector node. By our attack model, these are non-safety-critical nodes

(message IDs) that can be accessed remotely by an adversary to gain access to the safety-

critical nodes. The inputs to the monitoring node are the lookup table and the received

frame observed through the controller. When a valid frame is received and is transmitted

successfully, the next expected release time of the ID is updated in the lookup table. Oth-
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erwise, the error frame is transmitted if the message violates its periodicity or sporadicity.

By incrementing the counter, the controller can compare the next received message with

the sequence of the message in the updated table. The sequence helps in validating the

authenticity of the message as the counter should be consistent with the received message.

6.3.4 Attack Mitigation and Recovery

When the IDS detects an attack, the IPS reaction is to immediately enqueue an error

frame for transmission. This frame starts with six consecutive dominant bits, which will

have the highest priority during the next bus arbitration. The nodes in receipt of the error

frame will discard the message they received.

Each time a message is flagged as an attack, the IPS will transmit the error frame

causing the sending node to increase its TEC by 8, and every other node on the bus will

increase its REC by 1. If the attack continues until the TEC of the compromised node is

higher than 255, it enters the bus-off state. This method is similar to the attack proposed

by Cho and Shin [52] to drive a node to bus-off. Figure 6.5 shows the process of steps the

compromised node goes through before entering the bus-off state.

ECUs in the bus-off can either go through reset or observe 128 times 11 consecutive

recessive bits on the bus before they can transition into the error active state. We suggest

that ECUs with remote interface capability should undergo a reboot process. A reboot

process represents a recovery procedure that provides a way to restore the initial system

state. The reboot process does not depend on the correct functioning of the rebooted

system, is easy to implement and automate, and returns the software to its initial state,

which is often its best understood and best-tested state [98]. Power-cycling is fast with

minimal impact on the time it takes for the system to recover, and can provide high

availability of these ECUs even when a detection algorithm is prone to false alarms or

when it is unknown if the reboot process can correct the failure. Also, it should be noted

that these ECUs are not the safety-critical ones, so the impact of rebooting them will not

affect system safety, but perhaps will negatively affect user experience.
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6.4 IPS Implementation

To demonstrate the effectiveness of our approach, we developed a proof of concept

implementation using the Xilinx LogiCORE IP CAN v5.0 as a reference [99]. This core

conforms to the ISO 11898-1, CAN 2.0A, and CAN 2.0B standards. It is particularly suited

for automotive applications and has user-configurable options that provide flexibility for

multiple ECU applications. Options also exist to easily modify the proposed detector

node from standard frame size to support a system with extended message frames. It also

supports message prioritization via its high priority buffer (TX HPB) and readable error

counters. As such, it allows for seamless integration of our detector functionalities. Our

implementation targeted the Zynq-7000 SoC family devices which enable analytics and

hardware acceleration.

The CAN nodes in our network are assumed to be connected to the CAN bus via the

physical interface (CAN PHY). Each Xilinx CAN node can operate in stand-alone mode or

connected to a Control block or processor using its AXI4-Lite Interface located inside the

CAN Controller. The Controller has an Object Layer for message storage, filtering, and

status updating. It also has a transfer layer where the CAN protocol engine resides.

The CAN protocol engine consists primarily of the bit timing logic (BTL), the bit stream

processor (BSP) and the clock prescalar modules. The BTL synchronizes the operation of

the CAN bus and the BSP. At the appropriate clock tick, the BTL captures a received

bit or places a transmitted data bit from or to the CAN bus. It also produces a sampling

clock signal for the BSP. The BSP analyzes bus traffic during transmission and reception,

updates the error counters and the error state when necessary, and manages operations

dealing with CAN message transmission and reception. It captures message frames from

the high priority buffer (TX HPB) or from the transmission queue. It inserts the error flags

(bit, stuff, form, CRC and ACK errors). The frame’s bits are serialized and constructed

into fields per the CAN core messaging protocols at this stage. The reverse operation is

also completed by the BSP when data is received. Message frames are deconstructed and
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Figure 6.6: CAN controller with IPS module

stored in the receive queue (RX FIFO) where the identifier of the received message (IDR)

can be accessed by the detector node. The IDR is four bytes long and is located at the

head of the message frame. Its 11 most significant bits represent the message ID (Msg ID)

of the sender node. The arrival time stamp (Tarr) of each message is also recorded and

submitted to the IPS inside the detector node along with the clock signal (clk), which can

be derived from the main CAN engine protocol clock. In our approach, the IPS module

sits at the base of the BSP in the CAN protocol engine as shown in Figure 6.6.

The implementation features three modules: Message ID Check, Check Message Feature

and Update State. After the initial system reset, the Message ID Check module is acti-

vated once a message is received and ready to be read from the RX FIFO. The sender node

identification Msg ID is extracted and compared against entries of a look-up table contain-

ing all known nodes in the network. If a match is not found in the table, the error frame

signal is activated to indicate that the node from which the message is received is unknown

so invalidate the message. Upon a successful match, the detector examines the received

message inside the Check Message Feature, which is where we implement each of the three

IDSs used for evaluation.
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Interval IDS Response Time IDS
Slice Registers 65 163
Slice LUTs 71 138
Occupied Slices 30 81
LUT Flip-Flops 95 228

Table 6.1: Synthesis area results

When Check Message Feature detects an anomaly, the message is invalidated by sig-

naling the error frame and the error count update is triggered at the BSP level. In the case

Tarr’s range is valid, the Update State module becomes active. It updates the stored state

depending on the IDS in use, for example programming the next expected arrival time of

a message or incrementing message counters.

6.5 Experimental Validation

Here, we describe the evaluation criteria for our IPS to illustrate its effectiveness and

performance. First, we focus on the latency required for the detector node to issue a decision

after a message frame has been received at the controller level. We compare the imple-

mentation results of three different IDSs which includes Interval, frequency and response

time analysis based approaches. We also offer an analysis of the minimum operating speed

suitable for various CAN bus speed, using different data lengths for a standard message

frames.

6.5.1 Area

The area requirements for the message interval and message response time IDS are

shown in Table 6.1.
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6.5.2 Detection Latency

This evaluation considers only the computation time for a single message at the detector

level. The clock signal of the detector block is derived from the CAN controller clock.

For each message received, the detector node performs various checks which include

message instance ID checks and a check based on the arrival time. When the message

instance pass both checks, the detector node updates the arrival time of the next instance

of the message. This process is depicted in Figure 6.7 in detail for the message response time

analysis IDS. If the message fails one of the checks, the detector node transmits an error

frame and increase its REC by one while the TEC of the transmitting node is increased by

8.

Regardless of the IDS in use, if a message frame is received with an ID that is not

in the detector’s lookup table, it takes the detector four clock cycles to check for validity.

The detector node queues the error frame for transmission, which will occupy the bus

immediately after the injected message completes, thus invalidating the message frame of

that unknown ID.

For each IDS, the time needed for checking the message feature for an anomaly and
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updating the state may differ. The following characterizes these costs for each IDS we

consider.

1. Message Interval IDS. This IDS uses five clock cycles to check the difference

between the previous message transmission time and the transmission time of the

new message frame compared with the saved interval. The lookup table is updated

with the record of the new transmission time denoting the previous time for the next

arriving message.

2. Message Frequency IDS. This process takes 6 clock cycles for the IDS to check the

sender’s node ID against the list of known IDs in the network. Then the arrival time

is used along with the starting time of the observation window to determine whether

a new observation window should be started. The message count is updated and

checked against the maximum number of messages that is expected to be received

from that node within that time frame.

3. Message Response Time Analysis IDS. This IDS uses five clock cycles to check

whether the interarrival time of the message fits in the expected arrival time range

of the next message for the matching ID. The interarrival time of the next message

in the lookup table is updated with the record of the next arrival time, which also

included in the 5 clock cycles.

The static timing analysis of the post-route implementation shows that the detector

node can operate with a minimum clock period of 3.46ns. However, we have only been

able to achieve a clock period of 3.5ns. In other words, the maximum operating clock

frequency achieved without violating any time constraints is 286MHz, which is about 12

to 35 times faster than the IP CAN controller clock of 8 to 24MHz. In addition, per [99],

the characterization results of the IP Core runs between 160MHz to 220MHz for a Zynq

board running at a speed of −3. Thus, our detector block can run fast enough to generate

the necessary signals for the node.
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Assuming a bus speed of 1Mbps, the transmission time for a single bit is 1/busspeed and

the transmission time for a message frame with 8 bytes of data length code is 1.35× 10−4seconds.

This implies that to transmit 1-bit of the data frame will take approximately 2109ns to

complete. Recall that per the previously described scenarios, it only takes a maximum of

8ns for the detector to complete its check. Thus, assuming the detector is operating at full

speed (286MHz), it will have completed its operation and decided on the still-queued data

frame (bit 19 to 63) before the completion of the 13th bit. In an attack scenario where

the message ID is not in the lookup table or the timing is not as expected, the detector

node will have decided on the message, and an error frame will have been queued well

before the end of the transmission of the spoofed message. Furthermore, even if the detec-

tor is operating at a frequency of approximately 51KHz, it takes a maximum of 69597ns

to decide on the message frame in the worst case. This is still enough time to issue the

error frame right before the last bit in the end-of-frame of the message frame and before

the message completes. In Figure 6.8 we show the minimum frequency the detector can

operate in at different bus speed, while varying the number of data bits (0 to 8 bytes) being

transmitted. First, for every message frame transmitted, the detector has a minimum time

frame corresponding to 33 bits transmission time to issue a decision. This minimum occurs

when 0 bytes of data are included in the message frame. For each additional data byte,

the decision window increases by 8-bit transition time, effectively decreasing the required

operating frequency to be imposed on the detector node. Therefore, as can be seen on

the chart, for different bus speeds, the minimum frequency required gradually decreases to

approximately to a third when the number of data bytes increased from 0 to 8 bytes.

These minimum operating frequencies are similar to the case when the Interval IDS

is used. This is expected since a maximum of 5 clock cycles is needed by the detector.

However, for the Frequency IDS, the minimum frequency required is 62KHz, which is

higher than the others because the observation window must be reset when necessary.

Figure 6.9 shows the behavior of the frequency IDS for different bus speeds.

Additionally, in many vehicles, the non-safety-critical ECUs are attached to the medium
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and lower speed buses in which the transmission time is even longer. This also implies

that our detector node operating in the worst case frequency of 51KHz have much more

time to complete its operations and send an invalidation message. By this, our approach

to detecting anomalous behavior in the vehicular network is practical, and the proposed

algorithm is lightweight and computationally efficient.

6.5.3 Time to Error Passive and Bus Off States

We calculate the time for the compromised node to transition to error passive and bus off

state. Using 1Mbps bus speed, the transmission time, Cm for a single bit is τbit = 1
busspeed

,

and the error frame has a maximum of 23bits. Assuming the message is of the highest

priority and the error frame experience no interference during its transmission when the

anomalous message is detected, the total time consumed is calculated by:

16(Cm + 23× τbit) (6.1)

Where 16 represents the total number of anomalous messages required to transition

into another state, Cm is the maximum transmission time of a CAN message including the

stuff bits and the inter-frame space. Cm of a message with an 11-bit identifier containing

sm data bytes is given:

Cm = (55 + 10sm)τbit (6.2)

Similarly, if the anomalous message is not of the highest priority transmitting in the

bus, we incorporate the notion of message delay which is due to higher priority messages

that may win arbitration and get transmitted before the message. The recurrence relation

(equation 6.3) gives the message delay where k are set of messages with higher priority than

message i and Tk is their respective periods. The starting value for w0
i = 0 and terminates

when wn+1
i = wni .

wn+1
i =

∑
k<i

⌈
wni + τbit

Tk

⌉
Ck (6.3)
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Figure 6.10: Time to error passive for different bus speed

Therefore, from these calculations, it takes on the average 2.53ms for a message with

the highest priority to transition into the error passive state and approximately the same

time to transition into the bus off state. Figure6.10 shows the time it takes for a message

with the highest priority and different data bytes to transition into error passive state for

different bus speeds.

Furthermore, we confirm this assumption on the high speed CAN bus of a vehicle with

500kbps bus speed to measure how long it takes for a node to transition into an error

passive and bus off state. Figure6.11 shows the logs from our sniffer, and the anomalous

message (ID 82) is the 6th highest message transmitting on the bus. As shown, it takes

approximately 2.685ms for this node to transition into the error passive state. Similar

transition time was measured from error passive state to bus off.
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Abs Time(Sec) Rel Time (Sec) Network ID B1-256

0.764554024 0.000236273 HS CAN 202 4

0.764798343 0.000244319 HS CAN 204 DC

0.765046656 0.000217319 HS CAN 43E 0

0.765737414 0.000656068 HS CAN 82 7F

0.767215133 0.001477718 HS CAN 41 0

0.76746732 0.000252187 HS CAN 42 0

0.767709434 0.000255108 HS CAN 14B 79

0.7679497 0.000258744 HS CAN 167 B2

0.768197894 0.000248194 HS CAN 185 0

0.768432081 0.000205338 HS CAN 7A BA

0.76867038 0.000238299 HS CAN 25C 1

0.7689147 0.000244319 HS CAN 367 7

0.76916492 0.000237942 HS CAN 474 0

0.77161628 0.000197351 HS CAN 91 FF

0.771779835 0.00012058 HS CAN CAN Rx/Tx REGS - TEC: 8 - REC: 0 0

0.771860242 8.04E-05 HS CAN CAN Rx/Tx REGS - TEC: 16 - REC: 0 0

0.772003889 0.000143647 HS CAN CAN Rx/Tx REGS - TEC: 24 - REC: 0 0

0.77212131 0.000117421 HS CAN CAN Rx/Tx REGS - TEC: 32 - REC: 0 0

0.772238672 0.000117362 HS CAN CAN Rx/Tx REGS - TEC: 40 - REC: 0 0

0.772393048 0.000154376 HS CAN CAN Rx/Tx REGS - TEC: 48 - REC: 0 0

0.772510469 0.000117421 HS CAN CAN Rx/Tx REGS - TEC: 56 - REC: 0 0

0.772627831 0.000117362 HS CAN CAN Rx/Tx REGS - TEC: 64 - REC: 0 0

0.772786319 0.000158489 HS CAN CAN Rx/Tx REGS - TEC: 72 - REC: 0 0

0.77290374 0.000117421 HS CAN CAN Rx/Tx REGS - TEC: 80 - REC: 0 0

0.773053885 0.00012058 HS CAN CAN Rx/Tx REGS - TEC: 88 - REC: 0 0

0.773292005 0.000112474 HS CAN 76 3E

0.773406088 0.000114083 HS CAN Tx Error Warning - TEC: 96 - REC: 0 5

0.773667991 5.96E-06 HS CAN 77 0

0.773802042 0.000134051 HS CAN Tx Error Warning - TEC: 104 - REC: 0 5

0.77404207 0.000135839 HS CAN 7D 0

0.774143517 0.000101447 HS CAN Tx Error Warning - TEC: 112 - REC: 0 5

0.77430433 0.000157893 HS CAN Tx Error Warning - TEC: 120 - REC: 0 5

0.774465144 7.05E-05 HS CAN Tx Error Passive - TEC: 128 - REC: 0 10

0.774672031 3.91E-05 HS CAN 82 7F

0.774914801 4.16E-05 HS CAN 82 (Msg Error- Lost Arbitration) 7F

0.774936736 2.19E-05 HS CAN Tx Error Warning - TEC: 127 - REC: 0 5

Total time  =  0.002685 seconds

Figure 6.11: Log showing node transition into error passive state
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6.5.4 Practical Consideration of FO-IDS

For the placements of the detector node, we propose that a detector node should be

added to each bus that has remotely accessible ECUs communicating on it. This place-

ment will allow for effective detection of anomalies or malicious node behavior on the bus.

Figure 6.12 shows the practical placement of the detector node on the network.
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Figure 6.12: Practical placement of the detector node

6.6 Summary

In this chapter, we have described the fault-tolerant approach of the CAN bus and the

system architecture our proposed reboot-based recovery approach. We outlined the proce-

dure for detecting message IDs with anomalous behavior and the process of recovering for

the victim node. To evaluate the effectiveness of our approach, we developed a simulation

model to measure the time the compromised node takes to recover from going through all

the stages of recovery. Despite this performance, the practical use of this approach depends

on the speed of detection and recovery. Also, the performance of this approach depends
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on other external factors and the bus configuration. Furthermore, we examine the optimal

placement of the detector node on the vehicular network.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this dissertation, we have motivated the need for securing automotive in-vehicle

networks against cyber attacks using intrusion detection system that integrates reboot-

based fault-tolerance approach. The automotive in-vehicle networks are susceptible to

various cybersecurity risk and attacks because of the heterogeneous devices embedded in

the vehicles for safety, comfort, and automation. The result of these interconnected and

interacting devices is the consequence of device failure which can arise from the malicious

objective of an adversary against the networked automotive systems introduced to cause

harm. Knowing that a failure in one of the systems cannot affect another significantly or

compromise the entire operation of the system gives confidence in the use of these devices.

To achieve this, we developed a fail-operational intrusion detection system using the real-

time schedulability analysis of the CAN bus and a reboot-based recovery approach to detect

and recover from cybersecurity threats and attacks targeting the networked component.

In our approach, we model the ideal behavior of the CAN bus and use the worst-case

response time analysis to develop a specification of the standard bus operation used to

identify violations. Furthermore, we leverage the essential characteristics of the bus error

management capabilities for invalidating spoofed messages, stopped the propagation and

prevent subsequent damages while taking action to reboot the impersonated node to its

initial state.
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7.2 Future Work

The developed FO-IDS will require comprehensive testing in real-world attack and driv-

ing conditions that include different driving modes and attack scenarios. Some of the

possible directions for future work are as follows:

1. Evaluation of FO-IDS on a real vehicle: Current implementation of FO-IDS run

in a simulation and testbed environment. In our future work, we aim to implement

and examine our approach on a real network of a vehicle to measure the performance,

latency of detection and recovery while reducing false positives.

2. Experiment in another environment and attack scenario: We aim to continue

the experiment in other environments and evaluate our approach on different attack

scenarios to decrease the efficiency of malicious attacks on the vehicles. Also, we will

evaluate various attack intensity to improve the overall design of the algorithm.

3. Extension of the FO-IDS to other in-vehicle buses: We aim to adapt our

approach to other in-vehicle network buses such as LIN and MOST buses to enable

a comprehensive solution in attack detection and recovery.
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